要件の説明
データは階層的である場合があります。たとえば、以下に示すように、州と市区町村間の一般的な 3 レベルのリンクは、1 つのレイヤーの中に別のレイヤーが存在します。
データをデータベースに保存する場合、多くの場合、以下に示すようにリスト形式になります。
次に、データベースからクエリを実行するとき、フロントエンドの話に戻りますが、フロントエンドでツリーレベルを与える必要がある場合、再帰的にツリー構造に処理する必要があるため、次のツールが役立つ場合があります。
- @TreeParentKey は親ノードの識別子を識別します
- @TreeChildren は子孫ノードのコレクションを識別します
-
@Data @Data public class Place { @TreeKey private String id; @TreeParentKey private String parentId; private String name; @TreeChildren private List<Place> children; public Place(String id, String name, String parentId) { this.id = id; this.name = name; this.parentId = parentId; } }
テスト:
public class Test { public static void main(String[] args) { List<Place> places = new ArrayList<>(); places.add(new Place("510000", "四川省", "0")); places.add(new Place("510100", "成都市", "510000")); places.add(new Place("510107", "武侯区", "510100")); places.add(new Place("510116", "双流区", "510100")); places.add(new Place("511600", "广安市", "510000")); places.add(new Place("511603", "前锋区", "511600")); places.add(new Place("511621", "岳池县", "511600")); List<Place> treeList = TreeUtils.getTree(places, "0"); System.out.println(JSON.toJSONString(treeList)); } }最終効果:
ツール コード
@TreeKey
import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target; @Target(ElementType.FIELD) @Retention(RetentionPolicy.RUNTIME) public @interface TreeKey { }@TreeParentKey
import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target; @Target(ElementType.FIELD) @Retention(RetentionPolicy.RUNTIME) public @interface TreeParentKey { }@TreeChildren
import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target; @Target(ElementType.FIELD) @Retention(RetentionPolicy.RUNTIME) public @interface TreeChildren { }@TreeUtils
package com.csd.utils.tree; import java.lang.reflect.Field; import java.util.ArrayList; import java.util.Collections; import java.util.List; import java.util.Objects; /** * 递归求树形工具类 * * @author Yuanqiang.Zhang * @since 2023/3/8 */ public class TreeUtils { /** * 集合转化为树形 * * @param list 集合 * @param highestParentKey 最高层父节点值 * @param <T> 泛型 * @return 树形 */ public static <T> List<T> getTree(List<T> list, Object highestParentKey) { if (Objects.isNull(list) || list.isEmpty()) { return Collections.emptyList(); } Field key = null; Field parentKey = null; Field children = null; Field[] fields = list.get(0).getClass().getDeclaredFields(); for (Field field : fields) { if (Objects.isNull(key)) { TreeKey treeKey = field.getAnnotation(TreeKey.class); if (Objects.nonNull(treeKey)) { key = field; continue; } } if (Objects.isNull(parentKey)) { TreeParentKey treeParentKey = field.getAnnotation(TreeParentKey.class); if (Objects.nonNull(treeParentKey)) { parentKey = field; continue; } } if (Objects.isNull(children)) { TreeChildren treeChildren = field.getAnnotation(TreeChildren.class); if (Objects.nonNull(treeChildren)) { children = field; continue; } } } if (Objects.isNull(key) || Objects.isNull(parentKey) || Objects.isNull(children)) { return Collections.emptyList(); } key.setAccessible(true); parentKey.setAccessible(true); children.setAccessible(true); // 获取最高层数据 List<T> highs = new ArrayList<>(); try { for (T t : list) { Object pk = parentKey.get(t); if (getString(pk).equals(getString(highestParentKey))) { highs.add(t); } } // 获取最高层子孙节点 for (T t : highs) { setChildren(list, t, key, parentKey, children); } } catch (IllegalAccessException e) { e.printStackTrace(); } return highs; } /** * 获取子孙节点 * * @param list 集合 * @param parent 父节点对象 * @param key 唯一属性 * @param parentKey 父唯一属性 * @param children 节点 * @param <T> 泛型 * @return 带有子孙集合的父节点对象 * @throws IllegalAccessException */ private static <T> T setChildren(List<T> list, T parent, Field key, Field parentKey, Field children) throws IllegalAccessException { Object k = key.get(parent); List<T> tempList = new ArrayList<>(); for (T t : list) { Object pk = parentKey.get(t); if (getString(k).equals(getString(pk))) { tempList.add(setChildren(list, t, key, parentKey, children)); } } children.set(parent, tempList); return parent; } /** * 获取字符串 * * @param o 值 * @return 字符串 */ private static String getString(Object o) { return Objects.isNull(o) ? "" : o.toString(); } }
以上が再帰を使用して Java でツリー構造ツール クラスを実装する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

JVMは、バイトコード解釈、プラットフォームに依存しないAPI、動的クラスの負荷を介してJavaのWORA機能を実装します。 2。標準API抽象オペレーティングシステムの違い。 3.クラスは、実行時に動的にロードされ、一貫性を確保します。

Javaの最新バージョンは、JVMの最適化、標準的なライブラリの改善、サードパーティライブラリサポートを通じて、プラットフォーム固有の問題を効果的に解決します。 1)Java11のZGCなどのJVM最適化により、ガベージコレクションのパフォーマンスが向上します。 2)Java9のモジュールシステムなどの標準的なライブラリの改善は、プラットフォーム関連の問題を削減します。 3)サードパーティライブラリは、OpenCVなどのプラットフォーム最適化バージョンを提供します。

JVMのバイトコード検証プロセスには、4つの重要な手順が含まれます。1)クラスファイル形式が仕様に準拠しているかどうかを確認し、2)バイトコード命令の有効性と正確性を確認し、3)データフロー分析を実行してタイプの安全性を確保し、検証の完全性とパフォーマンスのバランスをとる。これらの手順を通じて、JVMは、安全で正しいバイトコードのみが実行されることを保証し、それによりプログラムの完全性とセキュリティを保護します。

java'splatformendencealLowsApplicationStorunOperatingSystemwithajvm.1)singlecodebase:writeandcompileonceforallplatforms.2)easyUpdates:updatebytecodeforsimultaneousdeployment.3)テストの実験効果:scalbortffortfforduniverbehaviol.4)

Javaのプラットフォームの独立性は、JVM、JITコンピレーション、標準化、ジェネリック、ラムダ式、Projectpanamaなどのテクノロジーを通じて継続的に強化されています。 1990年代以来、Javaは基本的なJVMから高性能モダンJVMに進化し、さまざまなプラットフォームでのコードの一貫性と効率を確保しています。

Javaはプラットフォーム固有の問題をどのように軽減しますか? Javaは、JVMおよび標準ライブラリを通じてプラットフォームに依存します。 1)bytecodeとjvmを使用して、オペレーティングシステムの違いを抽象化します。 2)標準のライブラリは、パスクラス処理ファイルパス、CHARSETクラス処理文字エンコードなど、クロスプラットフォームAPIを提供します。 3)最適化とデバッグのために、実際のプロジェクトで構成ファイルとマルチプラットフォームテストを使用します。

java'splatformentencentenhancesmicroservicesecturectureby byofferingdeploymentflexability、一貫性、スケーラビリティ、およびポート可能性。1)展開の展開の展開は、AllosmicRoserviThajvm.2)deploymentflexibility lowsmicroserviceSjvm.2)一貫性のあるAcrossServicessimplisimpligiessdevelisementand

Graalvmは、Javaのプラットフォームの独立性を3つの方法で強化します。1。言語間の相互運用性、Javaが他の言語とシームレスに相互運用できるようにします。 2。独立したランタイム環境、graalvmnativeimageを介してJavaプログラムをローカル実行可能ファイルにコンパイルします。 3.パフォーマンスの最適化、Graalコンパイラは、Javaプログラムのパフォーマンスと一貫性を改善するための効率的なマシンコードを生成します。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

ホットトピック









