コンセプト
ルーティング: ネットワーク内の 2 つのノード間のデータ伝送のパス。ネットワーク トポロジが複雑な場合、動的ルーティング プロトコルを構成すると、ルーターが自動的にルートを学習し、ゲートウェイの静的ルーティングのみに依存することによって発生するエラーを回避できます。
ルーター: 異なるサブネットを接続し、異なるサブネット間でデータ パケットを転送します。ルーティング プロトコルを備えたルーターは、データ パケットが最適な伝送パスを選択するのに役立ちます。
一般的なルーティング プロトコル: RIP プロトコルなどのディスタンス ベクター ルーティング プロトコルでは、最大有効ホップ数が 15 ホップであり、16 ホップ以上には到達不可能であり、どのパスが最も短いかに基づいて最適なパスが選択されると規定されています。 ; リンク ステートフル ルーティング プロトコル、ospf プロトコル、バックボーン ネットワーク AREA0 エリアは他のエリアへの接続を担当します DR と BDR は各エリアで選出されます BDR は DR のバックアップです DR と BDR は隣接ルータとの関係を維持する役割を果たしますselect 最適なパスは、どのパスが最速であるかに基づいて決定されます。
スタティック ルーティングの主な機能
1. 手動設定
管理者は、実際のニーズに応じて手動で設定する必要があります。ルーターは自動的にルーティングを生成しません。静的ルーティングには、ターゲット ノードまたはターゲット ネットワークの IP アドレスが含まれ、次の IP アドレスも含まれる場合があります。
2. ルーティング パスは比較的固定されています
管理者がローカル ルーター上で手動で設定した静的ルートのパスは、管理者自身が変更しない限り、通常は変更されません。
3. 永続的な存在
管理者が手動で静的ルートを作成すると、管理者自身がそれを削除するか、静的ルートで指定された送信インターフェイスが削除されない限り、その静的ルートはルーティング テーブルに永続的に残ります。閉まっている、または次の IP アドレスに到達できません。
4. 非通知性
スタティック ルーティング情報はデフォルトではプライベートであり、他のルータにアドバタイズされません。ネットワーク上で接続されている他のルーターにアドバタイズされます。
動的ルーティングの主な機能
1. ネットワーク状態の適応的な変化
動的ルーティングとは、ネットワーク内のルーター間の関係を指します。相互に通信し、経路情報を転送することにより、ルータテーブルを更新する処理。特定のルーティング プロトコルに基づいて実装されます。
2. ルーティング情報を自動的に維持する
ルーターは、独自のルーティング テーブルを自動的に構築し、実際の状況の変化に応じてタイムリーに調整できます。
Linux 動的ルーティング構成
Linux での動的ルーティング構成の実装原理
動的ルーティング プロトコルは、ルート中にルートを自動的に更新するルートです。選択処理 テーブル情報は、各ルータネットワークの状態情報に基づいてローカルルーティングテーブルを動的に更新するプロトコルであり、スタティックルーティングに比べて効率的にルーティングテーブルを維持することができます。一般的な動的ルーティング プロトコルには、RIP (Routing Information Protocol)、OSPF (Open Short Path First)、BGP (Border Gateway Protocol) などが含まれます。これらの実装方法は異なり、使用方法は特定のシステム環境によって異なります。
#動的ルーティングの構成
A——r1——r2——B1. RIP プロトコルの構成
1) r1 で RIP プロトコルを構成します
最初のステップ インストールソフトウェアyum install quagga -y2 番目のステップで RIP プロトコルの構成ファイルを生成します
#cp /usr/share/doc/quagga-*/ripd.conf.sample /etc/quagga/ripd.conf #cd /etc/quagga //可以查看下结果3 番目のステップで RIP サービスと quagga サービスを開始します
systemctl start zebra systemctl start ripd4 番目のステップでサービスを確認しますport
netstat -lantu | grep 2601 //zebra netstat -lantu | grep 2602 //ripd注: RIP プロトコル ポートは UDP 520です。5 番目のステップは、仮想端末を起動し、ルーティング プロトコルを設定することです。
#vtysh r1# config t //进入配置模式r1(config)# router rip //进入配置RIP路由协议模式 r1(config-router)# network 192.168.1.0/24 //声明本机直连的网络段 r1(config-router)# network 192.168.2.0/24 //声明本机直连网络段 r1(config-router)# end //进入全局模式,相当于exit或Ctrl+z r1# copy running-config startup-config //将当前配置保存于在开启读取的配置文件中,可以简写成copy run start r1# show ip route //查看当前本机路由表 r1# exit //退出vtysh
2) 設定します。 r2 の RIP プロトコル
最初と 4 番目のステップは、r1 の設定ステップと同じです5 番目のステップは、仮想端末を起動し、ルーティング プロトコルを設定することです
#vtysh r2# config t //进入配置模式r2(config)# router rip //进入配置RIP路由协议模式 r2(config-router)# network 192.168.2.0/24 //声明本机直连的网络段 r2(config-router)# network 192.168.3.0/24 //声明本机直连网络段 r2(config-router)# end //进入全局模式,相当于exit或Ctrl+z r2# copy running-config startup-config //将当前配置保存于在开启读取的配置文件中,可以简写成copy run start r2# show ip route //查看当前本机路由表 r2# exit //退出vtysh
2 、ospf プロトコルの構成
1) r1# での ospf プロトコルの構成##最初のステップはソフトウェアをインストールすることです
yum install quagga -y //安装过的话就不用安装了
2 番目のステップは ospf プロトコルの構成ファイルを生成します
#cp /usr/share/doc/quagga-*/ospfd.conf.sample /etc/quagga/ospfd.conf #cd /etc/quagga //可以过去查看下
3 番目のステップは ospf サービスと quagga サービスを開始します
systemctl start zebra systemctl start ospfd
4 番目のステップでサービス ポートを確認します
netstat -lantu | grep 2601 //zebra netstat -lantu | grep 2604 //ospf使用的是应用层协议
5 番目のステップで仮想端末を開始し、ルーティング プロトコルを構成します
#vtysh r1# config t //进入配置模式r1(config) # router ospf //进入配置ospf路由协议模式 r1(config-router)# network 192.168.1.0/24 area 10 //声明本机直连的网络段及隶属区域,area区号只要选择的不是0就行,0是主干网区域 r1(config-router)# network 192.168.2.0/24 area 10 //声明本机直连网络段及隶属区域 r1(config-router)# end //进入全局模式,相当于exit或Ctrl+z r1# copy running-config startup-config //将当前配置保存于在开启读取的配置文件中,可以简写成copy run start r1# show ip route //查看当前本机路由表 r1# exit //退出vtysh2) r2
# で ospf プロトコルを構成します##最初から 4 番目のステップは、r1 構成ステップと同じです
ステップ 5: 仮想端末を起動し、ルーティング プロトコルを構成します#vtysh r2# config t //进入配置模式r2(config)# router ospf //进入配置ospf路由协议模式 r2(config-router)# network 192.168.2.0/24 //声明本机直连的网络段及隶属区域,area区号只要选择的不是0就行,0是主干网区域 r2(config-router)# network 192.168.3.0/24 //声明本机直连网络段及隶属区域 r2(config-router)# end //进入全局模式,相当于exit或Ctrl+z r2# copy running-config startup-config //将当前配置保存于在开启读取的配置文件中,可以简写成copy run start r2# show ip route //查看当前本机路由表 r2# exit //退出vtysh
以上がLinuxは動的ルーティングをサポートしていますか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

メンテナンスモードは、Linuxシステム管理において重要な役割を果たし、修復、アップグレード、構成の変更を支援します。 1.メンテナンスモードを入力します。 Grubメニューから選択するか、コマンド「sudosystemctlisolaterscue.target」を使用できます。 2。メンテナンスモードでは、ファイルシステムの修理およびシステムの更新操作を実行できます。 3.高度な使用法には、ルートパスワードのリセットなどのタスクが含まれます。 4.メンテナンスモードに入ったり、ファイルシステムをマウントできないなどの一般的なエラーは、GRUB構成をチェックしてFSCKコマンドを使用して固定できます。

Linuxメンテナンスモードを使用するタイミングと理由:1)システムが起動するとき、2)主要なシステムの更新またはアップグレードを実行するとき、3)ファイルシステムメンテナンスを実行するとき。メンテナンスモードは、安全で制御された環境を提供し、運用上の安全性と効率を確保し、ユーザーへの影響を減らし、システムセキュリティを強化します。

Linuxの不可欠なコマンドは次のとおりです。1.LS:リストディレクトリの内容; 2.CD:作業ディレクトリを変更します。 3.mkdir:新しいディレクトリを作成します。 4.RM:ファイルまたはディレクトリを削除します。 5.CP:ファイルまたはディレクトリをコピーします。 6.MV:ファイルまたはディレクトリの移動または名前を変更します。これらのコマンドは、カーネルと対話することにより、ユーザーがファイルとシステムを効率的に管理するのに役立ちます。

Linuxでは、ファイルおよびディレクトリ管理ではLS、CD、MKDIR、RM、CP、MVコマンドを使用し、許可管理はCHMOD、CHOWN、およびCHGRPコマンドを使用します。 1。LS-Lなどのファイルおよびディレクトリ管理コマンドは、詳細情報、MKDIR-Pを再帰的に作成するディレクトリを再帰的に作成します。 2。CHMOD755FILEセットファイル許可、CHOWNUSERFILEファイル所有者、CHGRPGROUPFILEの変更ファイルグループなどの許可管理コマンド。これらのコマンドは、ファイルシステム構造とユーザーおよびグループシステムに基づいており、システムコールとメタデータを介して動作および制御します。

メンテナンスメモデンリンリンアスピアルブーテンビロンメント、criticalsystemmaincencetasks.itallowsadministratorstopertopertopertopersetstingtingpasswords、Repainingfilesystems、およびRecoveringfrombootfailurureSinaMinimalenvironment.

Linuxのコアコンポーネントには、カーネル、ファイルシステム、シェル、ユーザー、カーネルスペース、デバイスドライバー、パフォーマンスの最適化とベストプラクティスが含まれます。 1)カーネルは、ハードウェア、メモリ、プロセスを管理するシステムのコアです。 2)ファイルシステムはデータを整理し、Ext4、BTRFS、XFSなどの複数のタイプをサポートします。 3)シェルは、ユーザーがシステムと対話するためのコマンドセンターであり、スクリプトをサポートします。 4)システムの安定性を確保するために、ユーザースペースをカーネルスペースから分離します。 5)デバイスドライバーは、ハードウェアをオペレーティングシステムに接続します。 6)パフォーマンスの最適化には、システム構成とベストプラクティスのチューニングが含まれます。

Linuxシステムの5つの基本コンポーネントは次のとおりです。1。Kernel、2。Systemライブラリ、3。Systemユーティリティ、4。グラフィカルユーザーインターフェイス、5。アプリケーション。カーネルはハードウェアリソースを管理し、システムライブラリは事前コンパイルされた機能を提供し、システムユーティリティはシステム管理に使用され、GUIは視覚的な相互作用を提供し、アプリケーションはこれらのコンポーネントを使用して機能を実装します。

Linuxメンテナンスモードは、Grubメニューから入力できます。特定の手順は次のとおりです。1)GRUBメニューのカーネルを選択し、「E」を押して編集し、2)「Linux」行の最後に「シングル」または「1」を追加し、3)Ctrl Xを押して開始します。メンテナンスモードは、システム修理、パスワードリセット、システムのアップグレードなどのタスクに安全な環境を提供します。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

ホットトピック









