検索
ホームページバックエンド開発PHPチュートリアルPHP を使用してモール開発にレコメンデーション アルゴリズムを実装する方法

電子商取引業界の急速な発展に伴い、モールの推奨アルゴリズムの重要性がますます高まっています。推奨アルゴリズムにより、ユーザーにパーソナライズされた推奨サービスを提供できるため、ユーザーの購入率が向上し、モールにさらなる収益がもたらされます。モール開発では、PHP が一般的に使用されるプログラミング言語です。この記事では、PHP を使用して推奨アルゴリズムを実装する方法について説明します。

1. レコメンドアルゴリズムの概要

レコメンドアルゴリズムとは、ユーザーの行動データに基づいたデータ分析技術であり、ユーザーの過去の閲覧記録、購買記録、検索記録などを分析し、ユーザーに過去のイベントを推奨するものです。閲覧、購入、検索された商品などのデータを収集し、ユーザーの購入率を高めます。

現在一般的に使用されている推奨アルゴリズムには、コンテンツベースの推奨アルゴリズム、協調フィルタリング推奨アルゴリズム、行列分解ベースの推奨アルゴリズムなどが含まれます。このうち、コンテンツベースの推奨アルゴリズムは製品のテキスト説明と特徴に焦点を当て、協調フィルタリング推奨アルゴリズムはユーザーの行動データを分析し、ユーザー間の類似点を見つけてユーザーに類似の製品を推奨し、行列分解に基づく推奨アルゴリズムは、ユーザーと製品のマトリックスを分解して、ユーザーが好みそうな製品をレコメンドすることです。

2. PHP で推奨アルゴリズムを実装する方法

PHP で推奨アルゴリズムを実装するには、一般に 2 つの方法があります: オープンソースの推奨システム ライブラリを使用するか、独自の推奨アルゴリズムを作成します。

  1. オープンソースの推奨システム ライブラリを使用する

現在、Apache Mahout、LensKit など、多くのオープンソースの推奨システム ライブラリが市場に出回っています。これらのライブラリは通常、複数の推奨アルゴリズムをサポートし、これらのアルゴリズムを実装するためのツールと API を提供します。これにより、開発者の作業が大幅に簡素化されます。

Apache Mahout を例に挙げます。行列分解に基づく推奨アルゴリズムを使用したい場合は、次の手順に従います:

(1) Apache Mahout をダウンロードし、ローカルに抽出します。

(2) コンソールで次のコマンドを使用して、ユーザー製品マトリックス ファイルを生成します:

mahout seq2sparse -i input.csv -o Output -ow --maxDFPercent 85 --namedVector

ここで、input.csv はユーザー製品データを含む CSV ファイル、output は出力フォルダー、--maxDFPercent 85 は DF 値 (ドキュメント頻度) が 85% を超える用語をフィルターで除外するために使用されます。 --namedVector は名前付きベクトルを生成することを意味します。

(3) 次のコマンドを使用してモデルをトレーニングします:

mahoutParallelALS -i Output/tfidf-vectors -o Output/model -n 10 -r 0.05 -b 0.5 --implicitFeedback true -- lambda 0.1 --numThreadsPerSolver 1

このうち、output/tfidf-vectors は 2 番目のステップで生成されたユーザー製品マトリックス フォルダー、output/model は出力モデル フォルダー、-n 10 は設定を意味します因数の数を 10 に、 -r 0.05 は学習率を 0.05 に設定することを意味し、 -b 0.5 は正則化係数を 0.5 に設定することを意味します。

(4) 次のコマンドを使用して、製品に対するユーザーの評価を予測します。

mahout recommendfactorized -i Output/tfidf-vectors -o Output/recommendations -m Output/model -n 10

このうち、output/tfidf-vectors、output/model、-n 10 はそれぞれ先ほどのコマンドと同じで、output/recommendations は出力結果フォルダです。

  1. 独自の推奨アルゴリズムを作成する

オープンソースの推奨システム ライブラリを使用してもニーズを満たせない場合、または実装原則をより深く理解して習得したい場合推奨アルゴリズムの場合は、自分で記述することができます。

マトリックス分解に基づく推奨アルゴリズムを例に挙げると、具体的な手順は次のとおりです:

(1) ユーザー製品データを読み取り、ユーザー製品マトリックスを確立します。

( 2) SVD 分解または ALS 分解アルゴリズムを使用して行列を分解し、ユーザー要因行列と要因商品行列を取得します;

(3) 各ユーザーの推奨リストを生成します。ユーザー要因マトリックスと要因 - 製品マトリックスに基づいて、最高スコアを持つ N 製品を計算し、推奨リストとして使用します。

3. レコメンデーション アルゴリズムのパフォーマンスを最適化するためのヒント

レコメンデーション アルゴリズムを実装するプロセスでは、パフォーマンスと精度を向上させるために次のヒントにも注意する必要があります。アルゴリズム:

    データの前処理
ユーザーと製品のマトリックスを確立する前に、不要な情報の削除、異常なデータのクリアなど、データの前処理が必要です。

    アルゴリズム パラメーターの選択
さまざまなアルゴリズム パラメーターは、アルゴリズムのパフォーマンスと精度に影響します。通常、アルゴリズムのパラメーターは、最適な組み合わせが見つかるまで、試行錯誤を通じて継続的に調整できます。

    増分学習
レコメンデーション システム内のデータは増加し続けるため、ユーザーアイテムのマトリックスとモデルをタイムリーに更新する必要があります。増分学習を使用すると、モデル全体を再トレーニングせずに、新しく追加されたデータのみを更新できます。

4. 結論

レコメンデーション アルゴリズムの実装は、モールの開発にとって非常に重要です。この記事では、PHP を使用して推奨アルゴリズムを実装する方法と、アルゴリズムのパフォーマンスを最適化するためのテクニックを紹介します。実際の開発では、ユーザーの購入率やモールの収益を向上させるために、実情に応じて異なる推奨アルゴリズムや実装方法を選択する必要があります。

以上がPHP を使用してモール開発にレコメンデーション アルゴリズムを実装する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
PHP:サーバー側のスクリプト言語の紹介PHP:サーバー側のスクリプト言語の紹介Apr 16, 2025 am 12:18 AM

PHPは、動的なWeb開発およびサーバー側のアプリケーションに使用されるサーバー側のスクリプト言語です。 1.PHPは、編集を必要とせず、迅速な発展に適した解釈言語です。 2。PHPコードはHTMLに組み込まれているため、Webページの開発が簡単になりました。 3。PHPプロセスサーバー側のロジック、HTML出力を生成し、ユーザーの相互作用とデータ処理をサポートします。 4。PHPは、データベースと対話し、プロセスフォームの送信、サーバー側のタスクを実行できます。

PHPとWeb:その長期的な影響を調査しますPHPとWeb:その長期的な影響を調査しますApr 16, 2025 am 12:17 AM

PHPは過去数十年にわたってネットワークを形成しており、Web開発において重要な役割を果たし続けます。 1)PHPは1994年に発信され、MySQLとのシームレスな統合により、開発者にとって最初の選択肢となっています。 2)コア関数には、動的なコンテンツの生成とデータベースとの統合が含まれ、ウェブサイトをリアルタイムで更新し、パーソナライズされた方法で表示できるようにします。 3)PHPの幅広いアプリケーションとエコシステムは、長期的な影響を促進していますが、バージョンの更新とセキュリティの課題にも直面しています。 4)PHP7のリリースなど、近年のパフォーマンスの改善により、現代の言語と競合できるようになりました。 5)将来的には、PHPはコンテナ化やマイクロサービスなどの新しい課題に対処する必要がありますが、その柔軟性とアクティブなコミュニティにより適応性があります。

なぜPHPを使用するのですか?利点と利点が説明されましたなぜPHPを使用するのですか?利点と利点が説明されましたApr 16, 2025 am 12:16 AM

PHPの中心的な利点には、学習の容易さ、強力なWeb開発サポート、豊富なライブラリとフレームワーク、高性能とスケーラビリティ、クロスプラットフォームの互換性、費用対効果が含まれます。 1)初心者に適した学習と使用が簡単。 2)Webサーバーとの適切な統合および複数のデータベースをサポートします。 3)Laravelなどの強力なフレームワークを持っています。 4)最適化を通じて高性能を達成できます。 5)複数のオペレーティングシステムをサポートします。 6)開発コストを削減するためのオープンソース。

神話を暴く:PHPは本当に死んだ言語ですか?神話を暴く:PHPは本当に死んだ言語ですか?Apr 16, 2025 am 12:15 AM

PHPは死んでいません。 1)PHPコミュニティは、パフォーマンスとセキュリティの問題を積極的に解決し、PHP7.xはパフォーマンスを向上させます。 2)PHPは最新のWeb開発に適しており、大規模なWebサイトで広く使用されています。 3)PHPは学習しやすく、サーバーはうまく機能しますが、タイプシステムは静的言語ほど厳格ではありません。 4)PHPは、コンテンツ管理とeコマースの分野で依然として重要であり、エコシステムは進化し続けています。 5)OpcacheとAPCを介してパフォーマンスを最適化し、OOPと設計パターンを使用してコードの品質を向上させます。

PHP対Pythonの議論:どちらが良いですか?PHP対Pythonの議論:どちらが良いですか?Apr 16, 2025 am 12:03 AM

PHPとPythonには独自の利点と短所があり、選択はプロジェクトの要件に依存します。 1)PHPは、Web開発に適しており、学習しやすく、豊富なコミュニティリソースですが、構文は十分に近代的ではなく、パフォーマンスとセキュリティに注意を払う必要があります。 2)Pythonは、簡潔な構文と学習が簡単なデータサイエンスと機械学習に適していますが、実行速度とメモリ管理にはボトルネックがあります。

PHPの目的:動的なWebサイトの構築PHPの目的:動的なWebサイトの構築Apr 15, 2025 am 12:18 AM

PHPは動的なWebサイトを構築するために使用され、そのコア関数には次のものが含まれます。1。データベースに接続することにより、動的コンテンツを生成し、リアルタイムでWebページを生成します。 2。ユーザーのインタラクションを処理し、提出をフォームし、入力を確認し、操作に応答します。 3.セッションとユーザー認証を管理して、パーソナライズされたエクスペリエンスを提供します。 4.パフォーマンスを最適化し、ベストプラクティスに従って、ウェブサイトの効率とセキュリティを改善します。

PHP:データベースとサーバー側のロジックの処理PHP:データベースとサーバー側のロジックの処理Apr 15, 2025 am 12:15 AM

PHPはMySQLIおよびPDO拡張機能を使用して、データベース操作とサーバー側のロジック処理で対話し、セッション管理などの関数を介してサーバー側のロジックを処理します。 1)MySQLIまたはPDOを使用してデータベースに接続し、SQLクエリを実行します。 2)セッション管理およびその他の機能を通じて、HTTPリクエストとユーザーステータスを処理します。 3)トランザクションを使用して、データベース操作の原子性を確保します。 4)SQLインジェクションを防ぎ、例外処理とデバッグの閉鎖接続を使用します。 5)インデックスとキャッシュを通じてパフォーマンスを最適化し、読みやすいコードを書き、エラー処理を実行します。

PHPでのSQL注入をどのように防止しますか? (準備された声明、PDO)PHPでのSQL注入をどのように防止しますか? (準備された声明、PDO)Apr 15, 2025 am 12:15 AM

PHPで前処理ステートメントとPDOを使用すると、SQL注入攻撃を効果的に防ぐことができます。 1)PDOを使用してデータベースに接続し、エラーモードを設定します。 2)準備方法を使用して前処理ステートメントを作成し、プレースホルダーを使用してデータを渡し、メソッドを実行します。 3)結果のクエリを処理し、コードのセキュリティとパフォーマンスを確保します。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

VSCode Windows 64 ビットのダウンロード

VSCode Windows 64 ビットのダウンロード

Microsoft によって発売された無料で強力な IDE エディター

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

MantisBT

MantisBT

Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。