前言
数据来源:population_data.json,
先看一下数据长啥样
[ { "Country Name": "Arab World", "Country Code": "ARB", "Year": "1960", "Value": "96388069" }, { "Country Name": "Arab World", "Country Code": "ARB", "Year": "1961", "Value": "98882541.4" }, 省略。。。。 ]
'''这个文件实际上就是一个很长的Python列表,其中每个元素都是一个包含四个键的字典:
国家名、国别码、年份以及表示人口数量的值。
我们只关心每个国家2010年的人口数量,因此我们首先编写一个打印这些信息的程序:'''
import json #将数据加载到一个列表中 filename= 'population_data.json' with open(filename) as f : pop_data = json.load(f) #打印每个国家2010年的人口数量 for pop_dic in pop_data : if pop_dic["Year"] == '2010' : country_name= pop_dic['Country Name'] population =int(float(pop_dic['Value']) )#population_data.json中的每个键和值都是字符串。为处理这些人口数据,我们需要将表示人口数量的字符串转换为数字值,为此我们使用函数int(): print(country_name + ":" + str(population)) rab World:357868000 Caribbean small states:6880000 East Asia & Pacific (all income levels):2201536674 East Asia & Pacific (developing only):1961558757 Euro area:331766000 Europe & Central Asia (all income levels):890424544 Europe & Central Asia (developing only):405204000
获取两个字母的国别码
'''制作地图前,还需要解决数据存在的最后一个问题。Pygal中的地图制作工具要求数据为特定的格式:用国别码表示国家,以及用数字表示人口数量。处理地理政治数据时,经常需要用到几个标准化国别码集。
population_data.json中包含的是三个字母的国别码,但Pygal使用两个字母的国别码。我们需要想办法根据国家名获取两个字母的国别码。
Pygal使用的国别码存储在模块i18n(internationalization的缩写)中。
字典COUNTRIES包含的键和值分别为两个字母的国别码和国家名。
要查看这些国别码,可从模块i18n中导入这个字典,并打印其键和值:'''
from pygal_maps_world.i18n import COUNTRIES for country_code in sorted(COUNTRIES.keys()): print(country_code, COUNTRIES[country_code]) ad Andorra ae United Arab Emirates af Afghanistan al Albania
为获取国别码,我们将编写一个函数,它在COUNTRIES中查找并返回国别码。
我们将这个函数放在一个名为country_codes的模块中,以便能够在可视化程序中导入它:
from pygal_maps_world.i18n import COUNTRIES def get_country_code(country_name): #根据指定的国家,返回Pygal使用的两个字母的国别码 for code,name in COUNTRIES.items(): if name == country_name : return code # 如果没有找到指定的国家,就返回None return None #打印每个国家2010年的人口数量 for pop_dic in pop_data : if pop_dic["Year"] == '2010' : country_name= pop_dic['Country Name'] population =int(float(pop_dic['Value']) )#population_data.json中的每个键和值都是字符串。为处理这些人口数据,我们需要将表示人口数量的字符串转换为数字值,为此我们使用函数int(): code = get_country_code(country_name) if code : print(code + ":" + str(population)) else: print('error - ' + ":" + str(population)) error - :357868000 error - :6880000 error - :2201536674 error - :1961558757 error - :331766000
导致显示错误消息的原因有两个。首先,并非所有人口数量对应的都是国家,有些人口数量对应的是地区(阿拉伯世界)和经济类群(所有收入水平)。
其次,有些统计数据使用了不同的完整国家名(如Yemen, Rep.,而不是Yemen)。当前,我们将忽略导致错误的数据,看看根据成功恢复了的数据制作出的地图是什么样的。
制作世界地图
import pygal_maps_world.maps#创建了一个Worldmap实例,并设置了该地图的的title属性 wm = pygal_maps_world.maps.World() wm.title = 'North, Central, and South America' ''' 了方法add(),它接受一个标签和一个列表,其中后者包含我们要突出的国家的国别码。每次调用add()都将为指定的国家 选择一种新颜色,并在图表左边显示该颜色和指定的标签。我们要以同一种颜色显示整个北美地区,因此第一次调用add() 时,在传递给它的列表中包含'ca'、'mx'和'us',以同时突出加拿大、墨西哥和美国。接下来,对中美和南美国家做同样 的处理。 ''' wm.add('North America', ['ca', 'mx', 'us']) wm.add('Central America', ['bz', 'cr', 'gt', 'hn', 'ni', 'pa', 'sv']) wm.add('South America', ['ar', 'bo', 'br', 'cl', 'co', 'ec', 'gf', 'gy', 'pe', 'py', 'sr', 'uy', 've']) ''' 方法render_to_file()创建一个包含该图表的.svg文件,你可以在浏览器中打开它。输出是一幅以不同颜色突出北美、 中美和南美的地图 ''' wm.render_to_file('americas.svg')
绘制完整的世界人口地图
'''要呈现其他国家的人口数量,需要将前面处理的数据转换为Pygal要求的字典格式:键为两个字母的国别码,值为人口数量。
为此,在world_population.py中添加如下代码:
import json
#将数据加载到一个列表中 filename= 'population_data.json' with open(filename) as f : pop_data = json.load(f) def get_country_code(country_name): #根据指定的国家,返回Pygal使用的两个字母的国别码 for code,name in COUNTRIES.items(): if name == country_name : return code # 如果没有找到指定的国家,就返回None return None #创建一个包含人口数量是字典 cc_populations = {} #打印每个国家2010年的人口数量 for pop_dic in pop_data : if pop_dic["Year"] == '2010' : country_name= pop_dic['Country Name'] population =int(float(pop_dic['Value']) )#population_data.json中的每个键和值都是字符串。为处理这些人口数据,我们需要将表示人口数量的字符串转换为数字值,为此我们使用函数int(): code = get_country_code(country_name) if code : cc_populations[code] = population import pygal_maps_world.maps#创建了一个Worldmap实例,并设置了该地图的的title属性 wm = pygal_maps_world.maps.World() wm.title = 'world population in 2010, by country' wm.add('2010', cc_populations) wm.render_to_file('world_population.svg')
根据人口数量将国家分组
import json #将数据加载到一个列表中 filename= 'population_data.json' with open(filename) as f : pop_data = json.load(f) def get_country_code(country_name): #根据指定的国家,返回Pygal使用的两个字母的国别码 for code,name in COUNTRIES.items(): if name == country_name : return code # 如果没有找到指定的国家,就返回None return None #创建一个包含人口数量是字典 cc_populations = {} #打印每个国家2010年的人口数量 for pop_dic in pop_data : if pop_dic["Year"] == '2010' : country_name= pop_dic['Country Name'] population =int(float(pop_dic['Value']) )#population_data.json中的每个键和值都是字符串。为处理这些人口数据,我们需要将表示人口数量的字符串转换为数字值,为此我们使用函数int(): code = get_country_code(country_name) if code : cc_populations[code] = population ###根据人口数量将国家分3组 cc_pop_1,cc_pop_2,cc_pop_3 = {},{},{} for cc,pop in cc_populations.items(): if pop < 10000000: cc_pop_1[cc] = pop elif pop < 1000000000: cc_pop_2[cc] = pop else: cc_pop_3[cc] = pop import pygal_maps_world.maps#创建了一个Worldmap实例,并设置了该地图的的title属性 wm = pygal_maps_world.maps.World() wm.title = 'world population in 2010, by country' wm.add('0-10m', cc_pop_1) wm.add('10m-1bn', cc_pop_2) wm.add('> 1bn', cc_pop_3) wm.render_to_file('world_population.svg')
根据Pygal设置世界地图的样式
在这个地图中,根据人口将国家分组虽然很有效,但默认的颜色设置很难看。例如,在这里,Pygal选择了鲜艳的粉色和绿色基色。
下面使用Pygal样式设置指令来调整颜色。我们也让Pygal使用一种基色,但将指定该基色,并让三个分组的颜色差别更大
###根据Pygal设置世界地图的样式 ''' 在这个地图中,根据人口将国家分组虽然很有效,但默认的颜色设置很难看。例如,在这里,Pygal选择了鲜艳的粉色 和绿色基色。下面使用Pygal样式设置指令来调整颜色。我们也让Pygal使用一种基色,但将指定该基色,并让三个分组 的颜色差别更大 ''' ###根据人口数量将国家分组 import json #将数据加载到一个列表中 filename= 'population_data.json' with open(filename) as f : pop_data = json.load(f) def get_country_code(country_name): #根据指定的国家,返回Pygal使用的两个字母的国别码 for code,name in COUNTRIES.items(): if name == country_name : return code # 如果没有找到指定的国家,就返回None return None #创建一个包含人口数量是字典 cc_populations = {} #打印每个国家2010年的人口数量 for pop_dic in pop_data : if pop_dic["Year"] == '2010' : country_name= pop_dic['Country Name'] population =int(float(pop_dic['Value']) )#population_data.json中的每个键和值都是字符串。为处理这些人口数据,我们需要将表示人口数量的字符串转换为数字值,为此我们使用函数int(): code = get_country_code(country_name) if code : cc_populations[code] = population ###根据人口数量将国家分3组 cc_pop_1,cc_pop_2,cc_pop_3 = {},{},{} for cc,pop in cc_populations.items(): if pop < 10000000: cc_pop_1[cc] = pop elif pop < 1000000000: cc_pop_2[cc] = pop else: cc_pop_3[cc] = pop import pygal_maps_world.maps#创建了一个Worldmap实例,并设置了该地图的的title属性 from pygal.style import RotateStyle from pygal.style import LightColorizedStyle#加亮颜色主题 wm_style = RotateStyle('#336699', base_style= LightColorizedStyle) wm = pygal_maps_world.maps.World(style = wm_style) wm.title = 'world population in 2010, by country' wm.add('2010', cc_populations) wm.add('0-10m', cc_pop_1) wm.add('10m-1bn', cc_pop_2) wm.add('> 1bn', cc_pop_3) wm.render_to_file('world_population.svg')
以上がPythonで世界人口地図を描く方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Pythonの実際のアプリケーションには、データ分析、Web開発、人工知能、自動化が含まれます。 1)データ分析では、PythonはPandasとMatplotlibを使用してデータを処理および視覚化します。 2)Web開発では、DjangoおよびFlask FrameworksがWebアプリケーションの作成を簡素化します。 3)人工知能の分野では、TensorflowとPytorchがモデルの構築と訓練に使用されます。 4)自動化に関しては、ファイルのコピーなどのタスクにPythonスクリプトを使用できます。

Pythonは、データサイエンス、Web開発、自動化スクリプトフィールドで広く使用されています。 1)データサイエンスでは、PythonはNumpyやPandasなどのライブラリを介してデータ処理と分析を簡素化します。 2)Web開発では、DjangoおよびFlask Frameworksにより、開発者はアプリケーションを迅速に構築できます。 3)自動化されたスクリプトでは、Pythonのシンプルさと標準ライブラリが理想的になります。

Pythonの柔軟性は、マルチパラダイムサポートと動的タイプシステムに反映されていますが、使いやすさはシンプルな構文とリッチ標準ライブラリに由来しています。 1。柔軟性:オブジェクト指向、機能的および手続き的プログラミングをサポートし、動的タイプシステムは開発効率を向上させます。 2。使いやすさ:文法は自然言語に近く、標準的なライブラリは幅広い機能をカバーし、開発プロセスを簡素化します。

Pythonは、初心者から上級開発者までのすべてのニーズに適した、そのシンプルさとパワーに非常に好まれています。その汎用性は、次のことに反映されています。1)学習と使用が簡単、シンプルな構文。 2)Numpy、Pandasなどの豊富なライブラリとフレームワーク。 3)さまざまなオペレーティングシステムで実行できるクロスプラットフォームサポート。 4)作業効率を向上させるためのスクリプトおよび自動化タスクに適しています。

はい、1日2時間でPythonを学びます。 1.合理的な学習計画を作成します。2。適切な学習リソースを選択します。3。実践を通じて学んだ知識を統合します。これらの手順は、短時間でPythonをマスターするのに役立ちます。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

メモ帳++7.3.1
使いやすく無料のコードエディター
