検索
ホームページバックエンド開発Python チュートリアルPython モデルのパフォーマンス ROC と AUC とは何ですか

Text

ROC 分析と曲線下面積 (AUC) は、さまざまなパラメーター化の下でモデルの品質を評価するために、信号処理から借用されたデータ サイエンスで広く使用されているツールです。 2 つ以上のモデルのパフォーマンスを比較します。

精度や再現率などの従来のパフォーマンス指標は、陽性サンプルの観察に大きく依存しています。したがって、ROC と AUC は、陽性と陰性の両方の観察を考慮して、真陽性率と偽陽性率を使用して品質を評価します。

問題を分解して機械学習を使用して問題を解決するまでのプロセスには、複数のステップがあります。これには、データの収集、クリーニングと特徴エンジニアリング、モデルの構築、そして最後にモデルのパフォーマンスの評価が含まれます。

モデルの品質を評価するときは、通常、データ マイニングの分野では、精度と再現率 (それぞれ信頼性と感度とも呼ばれます) などの指標を使用します。

これらのメトリクスは、予測値を、通常はホールドアウト セットからの実際の観測値と比較し、混同行列を使用して視覚化します。

Python モデルのパフォーマンス ROC と AUC とは何ですか

まず、陽性的中率とも呼ばれる精度に焦点を当てましょう。混同行列を使用すると、すべての真陽性とすべての予測陽性の比率として精度を構築できます。

Python モデルのパフォーマンス ROC と AUC とは何ですか

真陽性率とも呼ばれる再現率は、観察されたすべての陽性者および予測された陽性者に対する真陽性者の比率を表します。

Python モデルのパフォーマンス ROC と AUC とは何ですか

混同行列でさまざまな観測値のセットを使用して PrecisionRecall を説明すると、これらの指標がどのように機能するかを理解し始めることができます。モデルのパフォーマンス ビューに通知します。

精度と再現率は、否定的な例を考慮せず、肯定的な例と予測のみに焦点を当てていることに注意してください。さらに、モデルのパフォーマンスをシナリオの中央値と比較していませんが、これは単なるランダムな推測にすぎません。

1. ROC Curve

ROC は、精度と再現率の間のトレードオフを視覚化するために使用される要約ツールです。 ROC 分析では、ROC 曲線を使用して、バイナリ信号の値がどの程度ノイズ、つまりランダム性によって汚染されているかを判断します。これは、さまざまな操作点にわたる連続予測子の感度と特異度の概要を提供します。 ROC 曲線は、Y 軸の真陽性率に対して X 軸に偽陽性率をプロットすることで得られます。

真陽性率はシグナルを検出する確率であり、偽陽性率は偽陽性の確率であるため、ROC 分析は病気や病気を確実に検出するしきい値を決定するために医学研究でも広く使用されています。他の行動。

Python モデルのパフォーマンス ROC と AUC とは何ですか

完璧なモデルでは偽陽性率と真陽性率が 1 に等しいため、ROC プロットの左上隅にある単一の操作点になります。 。そして、考えられる最悪のモデルでは、ROC プロットの左下隅に単一の操作点があり、偽陽性率が 1 に等しく、真陽性率が 0 に等しくなります。

ランダム推測モデルは結果を正しく予測できる確率が 50% であるため、偽陽性率は常に真陽性率と等しくなります。グラフに対角線があるのはこのためです。これは、信号とノイズを検出する確率が 50/50 であることを表しています。

2. AUC 面積

ROC 曲線を完全に分析し、モデルのパフォーマンスを他のいくつかのモデルと比較するには、実際に曲線下面積 (AUC) を計算する必要があります。文献では c 統計量と呼ばれています。曲線下面積 (AUC) は 0 ~ 1 の値を持ちます。これは、曲線が 1x1 グリッド上にプロットされ、信号理論に平行しているためであり、信号の検出可能性の尺度になります。

これは、モデルが実際の観測値と誤った観測値をどの程度ランク付けしているかがわかるため、非常に便利な統計です。これは実際には、ウィルコクソン・マン・ホイットニー順位和検定の正規化バージョンであり、2 つの順序付けされた測定サンプルが 1 つの分布から抽出される帰無仮説を検定します。

ROC 曲線をプロットして曲線下面積 (AUC) を計算するには、SckitLearn の RocCurveDisplay メソッドを使用し、同じ分類タスクを解決するために多層パーセプトロンをランダム フォレスト モデルと比較することにします。

rreeee

Python モデルのパフォーマンス ROC と AUC とは何ですか

以上がPython モデルのパフォーマンス ROC と AUC とは何ですかの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は亿速云で複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
Pythonの学習:2時間の毎日の研究で十分ですか?Pythonの学習:2時間の毎日の研究で十分ですか?Apr 18, 2025 am 12:22 AM

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Web開発用のPython:主要なアプリケーションWeb開発用のPython:主要なアプリケーションApr 18, 2025 am 12:20 AM

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化

Python vs. C:パフォーマンスと効率の探索Python vs. C:パフォーマンスと効率の探索Apr 18, 2025 am 12:20 AM

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Python in Action:実世界の例Python in Action:実世界の例Apr 18, 2025 am 12:18 AM

Pythonの実際のアプリケーションには、データ分析、Web開発、人工知能、自動化が含まれます。 1)データ分析では、PythonはPandasとMatplotlibを使用してデータを処理および視覚化します。 2)Web開発では、DjangoおよびFlask FrameworksがWebアプリケーションの作成を簡素化します。 3)人工知能の分野では、TensorflowとPytorchがモデルの構築と訓練に使用されます。 4)自動化に関しては、ファイルのコピーなどのタスクにPythonスクリプトを使用できます。

Pythonの主な用途:包括的な概要Pythonの主な用途:包括的な概要Apr 18, 2025 am 12:18 AM

Pythonは、データサイエンス、Web開発、自動化スクリプトフィールドで広く使用されています。 1)データサイエンスでは、PythonはNumpyやPandasなどのライブラリを介してデータ処理と分析を簡素化します。 2)Web開発では、DjangoおよびFlask Frameworksにより、開発者はアプリケーションを迅速に構築できます。 3)自動化されたスクリプトでは、Pythonのシンプルさと標準ライブラリが理想的になります。

Pythonの主な目的:柔軟性と使いやすさPythonの主な目的:柔軟性と使いやすさApr 17, 2025 am 12:14 AM

Pythonの柔軟性は、マルチパラダイムサポートと動的タイプシステムに反映されていますが、使いやすさはシンプルな構文とリッチ標準ライブラリに由来しています。 1。柔軟性:オブジェクト指向、機能的および手続き的プログラミングをサポートし、動的タイプシステムは開発効率を向上させます。 2。使いやすさ:文法は自然言語に近く、標準的なライブラリは幅広い機能をカバーし、開発プロセスを簡素化します。

Python:汎用性の高いプログラミングの力Python:汎用性の高いプログラミングの力Apr 17, 2025 am 12:09 AM

Pythonは、初心者から上級開発者までのすべてのニーズに適した、そのシンプルさとパワーに非常に好まれています。その汎用性は、次のことに反映されています。1)学習と使用が簡単、シンプルな構文。 2)Numpy、Pandasなどの豊富なライブラリとフレームワーク。 3)さまざまなオペレーティングシステムで実行できるクロスプラットフォームサポート。 4)作業効率を向上させるためのスクリプトおよび自動化タスクに適しています。

1日2時間でPythonを学ぶ:実用的なガイド1日2時間でPythonを学ぶ:実用的なガイドApr 17, 2025 am 12:05 AM

はい、1日2時間でPythonを学びます。 1.合理的な学習計画を作成します。2。適切な学習リソースを選択します。3。実践を通じて学んだ知識を統合します。これらの手順は、短時間でPythonをマスターするのに役立ちます。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン

EditPlus 中国語クラック版

EditPlus 中国語クラック版

サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

PhpStorm Mac バージョン

PhpStorm Mac バージョン

最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境