検索
ホームページバックエンド開発Python チュートリアルPython Numpyにおけるndarrayの一般的な操作例の分析

はじめに

NumPy (数値 Python) は、Python 用のオープンソース数値計算拡張機能です。このツールは、大規模な行列の保存と処理に使用できます。Python 独自の入れ子になったリスト構造 (行列の表現にも使用できます) よりもはるかに効率的で、多数の次元配列および行列の演算をサポートしています。配列演算用の数学関数ライブラリも多数提供しています。
Numpy は主に ndarray を使用して N 次元配列を処理します。Numpy のほとんどのプロパティとメソッドは ndarray に対応するため、Numpy での ndarray の一般的な操作を習得することが非常に必要です。

0 Numpy の基本

NumPy の主なオブジェクトは、同型多次元配列です。これは要素 (通常は数値) のリストであり、すべて同じ型で、非負の整数のタプルによってインデックスが付けられます。 NumPy 次元の軸と呼ばれます。
以下に示す例では、配列には 2 つの軸があります。最初の軸の長さは 2 で、2 番目の軸の長さは 3 です。

[[ 1., 0., 0.],
 [ 0., 1., 2.]]

1 ndarray のプロパティ

1.1 ndarray の出力共通プロパティ

  • ndarray.ndim: の軸 (次元)配列) の番号。 Python の世界では、次元の数をランクと呼びます。

  • ndarray.shape: 配列の次元。これは、各次元の配列のサイズを表す整数のタプルです。 n 行 m 列の行列の場合、形状は (n,m) になります。したがって、形状タプルの長さは、次元 ndim のランクまたは数になります。

  • ndarray.size: 配列要素の合計数。これは、形状要素の積に等しい。

  • ndarray.dtype: 配列内の要素のタイプを記述するオブジェクト。 dtype は、標準の Python タイプを使用して作成または指定できます。さらに、NumPy は独自の型を提供します。たとえば、numpy.int32、numpy.int16、numpy.float64 などです。

  • ndarray.itemsize : 配列内の各要素のバイト サイズ。たとえば、float64 型の要素を含む配列の項目サイズは 8 (=64/8) ですが、complex32 型の配列の項目サイズは 4 (=32/8) です。 ndarray.dtype.itemsize と同じです。

>>> import numpy as np
>>> a = np.arange(15).reshape(3, 5)
>>> a
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])
>>> a.shape
(3, 5)
>>> a.ndim
2
>>> a.dtype.name
'int64'
>>> a.itemsize
8
>>> a.size
15
>>> type(a)
<type &#39;numpy.ndarray&#39;>
>>> b = np.array([6, 7, 8])
>>> b
array([6, 7, 8])
>>> type(b)
<type &#39;numpy.ndarray&#39;>

2 ndarray のデータ型

同じ ndarray には、同じ型のデータが格納されます。ndarray の一般的なデータ型は次のとおりです。

Python Numpyにおけるndarrayの一般的な操作例の分析

3 ndarray の形状とデータ型を変更する

3.1 ndarray の形状を表示および変更する

## ndarray reshape操作
array_a = np.array([[1, 2, 3], [4, 5, 6]])
print(array_a, array_a.shape)
array_a_1 = array_a.reshape((3, 2))
print(array_a_1, array_a_1.shape)
# note: reshape不能改变ndarray中元素的个数,例如reshape之前为(2,3),reshape之后为(3,2)/(1,6)...
## ndarray转置
array_a_2 = array_a.T
print(array_a_2, array_a_2.shape)
## ndarray ravel操作:将ndarray展平
a.ravel()  # returns the array, flattened
array([ 1,  2,  3,  4,  5,  6 ])

输出:
[[1 2 3]
 [4 5 6]] (2, 3)
[[1 2]
 [3 4]
 [5 6]] (3, 2)
[[1 4]
 [2 5]
 [3 6]] (3, 2)

3.2 ndarray の形状 データ型

astype(dtype[, order, Casting, subok, copy]): ndarray のデータ型を変更します。変更する必要があるデータ型を渡します。他のキーワード パラメーターは無視できます。

array_a = np.array([[1, 2, 3], [4, 5, 6]])
print(array_a, array_a.dtype)
array_a_1 = array_a.astype(np.int64)
print(array_a_1, array_a_1.dtype)
输出:
[[1 2 3]
 [4 5 6]] int32
[[1 2 3]
 [4 5 6]] int64

4 ndarray 配列の作成

NumPy は主に np.array() 関数を通じて ndarray 配列を作成します。

>>> import numpy as np
>>> a = np.array([2,3,4])
>>> a
array([2, 3, 4])
>>> a.dtype
dtype(&#39;int64&#39;)
>>> b = np.array([1.2, 3.5, 5.1])
>>> b.dtype
dtype(&#39;float64&#39;)

作成時に配列の型を明示的に指定することもできます。

>>> c = np.array( [ [1,2], [3,4] ], dtype=complex )
>>> c
array([[ 1.+0.j,  2.+0.j],
       [ 3.+0.j,  4.+0.j]])

np.random.random# を使用して作成することもできます。 ## 関数 ランダムな ndarray 配列。

>>> a = np.random.random((2,3))
>>> a
array([[ 0.18626021,  0.34556073,  0.39676747],
       [ 0.53881673,  0.41919451,  0.6852195 ]])

通常、配列の要素は最初は不明ですが、そのサイズはわかっています。したがって、NumPy は、初期プレースホルダーの内容を含む配列

を作成するための関数をいくつか提供します。これにより、コストのかかる操作であるアレイの拡張の必要性が軽減されます。 Functionzeros
は 0 で構成される配列を作成し、関数 ones は完全な配列を作成し、関数 empty は初期内容がランダムである配列を作成します。記憶の状態。 デフォルトでは、作成される配列の dtype は float64 です。

>>> np.zeros( (3,4) )
array([[ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.]])
>>> np.ones( (2,3,4), dtype=np.int16 )                # dtype can also be specified
array([[[ 1, 1, 1, 1],
        [ 1, 1, 1, 1],
        [ 1, 1, 1, 1]],
       [[ 1, 1, 1, 1],
        [ 1, 1, 1, 1],
        [ 1, 1, 1, 1]]], dtype=int16)
>>> np.empty( (2,3) )                                 # uninitialized, output may vary
array([[  3.73603959e-262,   6.02658058e-154,   6.55490914e-260],
       [  5.30498948e-313,   3.14673309e-307,   1.00000000e+000]])
数値の配列を作成するために、NumPy は、リストの代わりに配列を返す

range

に似た関数を提供します。 <pre class='brush:php;toolbar:false;'>&gt;&gt;&gt; np.arange( 10, 30, 5 ) array([10, 15, 20, 25]) &gt;&gt;&gt; np.arange( 0, 2, 0.3 ) # it accepts float arguments array([ 0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8])</pre>5 ndarray 配列の一般的な操作

多くの行列言語とは異なり、積演算子

*

は NumPy 配列で要素ごとに操作します。行列積は、@ 演算子 (Python> = 3.5 の場合) または dot 関数またはメソッドを使用して実行できます: <pre class='brush:php;toolbar:false;'>&gt;&gt;&gt; A = np.array( [[1,1], ... [0,1]] ) &gt;&gt;&gt; B = np.array( [[2,0], ... [3,4]] ) &gt;&gt;&gt; A * B # elementwise product array([[2, 0], [0, 4]]) &gt;&gt;&gt; A @ B # matrix product array([[5, 4], [3, 4]]) &gt;&gt;&gt; A.dot(B) # another matrix product array([[5, 4], [3, 4]])</pre> 特定の演算 (例:

=

および *=) は、新しい行列配列を作成せずに、操作対象の行列配列をより直接的に変更します。 <pre class='brush:php;toolbar:false;'>&gt;&gt;&gt; a = np.ones((2,3), dtype=int) &gt;&gt;&gt; b = np.random.random((2,3)) &gt;&gt;&gt; a *= 3 &gt;&gt;&gt; a array([[3, 3, 3], [3, 3, 3]]) &gt;&gt;&gt; b += a &gt;&gt;&gt; b array([[ 3.417022 , 3.72032449, 3.00011437], [ 3.30233257, 3.14675589, 3.09233859]]) &gt;&gt;&gt; a += b # b is not automatically converted to integer type Traceback (most recent call last): ... TypeError: Cannot cast ufunc add output from dtype(&amp;#39;float64&amp;#39;) to dtype(&amp;#39;int64&amp;#39;) with casting rule &amp;#39;same_kind&amp;#39;</pre>異なる型の配列を操作する場合、結果の配列の型は、より一般的または正確な配列に対応します (アップキャストと呼ばれる動作)。

>>> a = np.ones(3, dtype=np.int32)
>>> b = np.linspace(0,pi,3)
>>> b.dtype.name
&#39;float64&#39;
>>> c = a+b
>>> c
array([ 1.        ,  2.57079633,  4.14159265])
>>> c.dtype.name
&#39;float64&#39;
>>> d = np.exp(c*1j)
>>> d
array([ 0.54030231+0.84147098j, -0.84147098+0.54030231j,
       -0.54030231-0.84147098j])
>>> d.dtype.name
&#39;complex128&#39;

配列内のすべての要素の合計の計算など、多くの単項演算は、

ndarray

クラスのメソッドとして実装されます。 <pre class='brush:php;toolbar:false;'>&gt;&gt;&gt; a = np.random.random((2,3)) &gt;&gt;&gt; a array([[ 0.18626021, 0.34556073, 0.39676747], [ 0.53881673, 0.41919451, 0.6852195 ]]) >>> a.sum() 2.5718191614547998 >>> a.min() 0.1862602113776709 >>> a.max() 0.6852195003967595</pre>

デフォルトでは、これらの操作は配列の形状に関係なく、あたかも数値のリストであるかのように配列に対して機能します。ただし、axis パラメーターを指定すると、配列の指定した軸に沿って演算を適用できます。

>>> b = np.arange(12).reshape(3,4)
>>> b
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>>
>>> b.sum(axis=0)                            # 计算每一列的和
array([12, 15, 18, 21])
>>>
>>> b.min(axis=1)                            # 计算每一行的和
array([0, 4, 8])
>>>
>>> b.cumsum(axis=1)                         # cumulative sum along each row
array([[ 0,  1,  3,  6],
       [ 4,  9, 15, 22],
       [ 8, 17, 27, 38]])
解释:以第一行为例,0=0,1=1+0,3=2+1+0,6=3+2+1+0
6 ndarray 配列のインデックス付け、スライス、反復

Oneディメンション

配列は、リストや他の Python シーケンス タイプと同様に、インデックス付け、スライス、反復が可能です。

>>> a = np.arange(10)**3
>>> a
array([  0,   1,   8,  27,  64, 125, 216, 343, 512, 729])
>>> a[2]
8
>>> a[2:5]
array([ 8, 27, 64])
>>> a[:6:2] = -1000    # 等价于 a[0:6:2] = -1000; 从0到6的位置, 每隔一个设置为-1000
>>> a
array([-1000,     1, -1000,    27, -1000,   125,  fan 216,   343,   512,   729])
>>> a[ : :-1]                                 # 将a反转
array([  729,   512,   343,   216,   125, -1000,    27, -1000,     1, -1000])

多次元

配列は、軸ごとに 1 つのインデックスを持つことができます。これらのインデックスは、カンマ区切りのタプルとして指定されます:

>>> b
array([[ 0,  1,  2,  3],
       [10, 11, 12, 13],
       [20, 21, 22, 23],
       [30, 31, 32, 33],
       [40, 41, 42, 43]])
>>> b[2,3]
23
>>> b[0:5, 1]                       # each row in the second column of b
array([ 1, 11, 21, 31, 41])
>>> b[ : ,1]                        # equivalent to the previous example
array([ 1, 11, 21, 31, 41])
>>> b[1:3, : ]                      # each column in the second and third row of b
array([[10, 11, 12, 13],
       [20, 21, 22, 23]])
>>> b[-1]                                  # the last row. Equivalent to b[-1,:]
array([40, 41, 42, 43])

7 ndarray数组的堆叠、拆分

几个数组可以沿不同的轴堆叠在一起,例如:np.vstack()函数和np.hstack()函数

>>> a = np.floor(10*np.random.random((2,2)))
>>> a
array([[ 8.,  8.],
       [ 0.,  0.]])
>>> b = np.floor(10*np.random.random((2,2)))
>>> b
array([[ 1.,  8.],
       [ 0.,  4.]])
>>> np.vstack((a,b))
array([[ 8.,  8.],
       [ 0.,  0.],
       [ 1.,  8.],
       [ 0.,  4.]])
>>> np.hstack((a,b))
array([[ 8.,  8.,  1.,  8.],
       [ 0.,  0.,  0.,  4.]])

column_stack()函数将1D数组作为列堆叠到2D数组中。

>>> from numpy import newaxis
>>> a = np.array([4.,2.])
>>> b = np.array([3.,8.])
>>> np.column_stack((a,b))     # returns a 2D array
array([[ 4., 3.],
       [ 2., 8.]])
>>> np.hstack((a,b))           # the result is different
array([ 4., 2., 3., 8.])
>>> a[:,newaxis]               # this allows to have a 2D columns vector
array([[ 4.],
       [ 2.]])
>>> np.column_stack((a[:,newaxis],b[:,newaxis]))
array([[ 4.,  3.],
       [ 2.,  8.]])
>>> np.hstack((a[:,newaxis],b[:,newaxis]))   # the result is the same
array([[ 4.,  3.],
       [ 2.,  8.]])

使用hsplit(),可以沿数组的水平轴拆分数组,方法是指定要返回的形状相等的数组的数量,或者指定应该在其之后进行分割的列:
同理,使用vsplit(),可以沿数组的垂直轴拆分数组,方法同上。

################### np.hsplit ###################
>>> a = np.floor(10*np.random.random((2,12)))
>>> a
array([[ 9.,  5.,  6.,  3.,  6.,  8.,  0.,  7.,  9.,  7.,  2.,  7.],
       [ 1.,  4.,  9.,  2.,  2.,  1.,  0.,  6.,  2.,  2.,  4.,  0.]])
>>> np.hsplit(a,3)   # Split a into 3
[array([[ 9.,  5.,  6.,  3.],
       [ 1.,  4.,  9.,  2.]]), array([[ 6.,  8.,  0.,  7.],
       [ 2.,  1.,  0.,  6.]]), array([[ 9.,  7.,  2.,  7.],
       [ 2.,  2.,  4.,  0.]])]
>>> np.hsplit(a,(3,4))   # Split a after the third and the fourth column
[array([[ 9.,  5.,  6.],
       [ 1.,  4.,  9.]]), array([[ 3.],
       [ 2.]]), array([[ 6.,  8.,  0.,  7.,  9.,  7.,  2.,  7.],
       [ 2.,  1.,  0.,  6.,  2.,  2.,  4.,  0.]])]
>>> x = np.arange(8.0).reshape(2, 2, 2)
>>> x
array([[[0.,  1.],
        [2.,  3.]],
       [[4.,  5.],
        [6.,  7.]]])
################### np.vsplit ###################
>>> np.vsplit(x, 2)
[array([[[0., 1.],
        [2., 3.]]]), array([[[4., 5.],
        [6., 7.]]])]

以上がPython Numpyにおけるndarrayの一般的な操作例の分析の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は亿速云で複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
Pythonの学習:2時間の毎日の研究で十分ですか?Pythonの学習:2時間の毎日の研究で十分ですか?Apr 18, 2025 am 12:22 AM

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Web開発用のPython:主要なアプリケーションWeb開発用のPython:主要なアプリケーションApr 18, 2025 am 12:20 AM

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化

Python vs. C:パフォーマンスと効率の探索Python vs. C:パフォーマンスと効率の探索Apr 18, 2025 am 12:20 AM

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Python in Action:実世界の例Python in Action:実世界の例Apr 18, 2025 am 12:18 AM

Pythonの実際のアプリケーションには、データ分析、Web開発、人工知能、自動化が含まれます。 1)データ分析では、PythonはPandasとMatplotlibを使用してデータを処理および視覚化します。 2)Web開発では、DjangoおよびFlask FrameworksがWebアプリケーションの作成を簡素化します。 3)人工知能の分野では、TensorflowとPytorchがモデルの構築と訓練に使用されます。 4)自動化に関しては、ファイルのコピーなどのタスクにPythonスクリプトを使用できます。

Pythonの主な用途:包括的な概要Pythonの主な用途:包括的な概要Apr 18, 2025 am 12:18 AM

Pythonは、データサイエンス、Web開発、自動化スクリプトフィールドで広く使用されています。 1)データサイエンスでは、PythonはNumpyやPandasなどのライブラリを介してデータ処理と分析を簡素化します。 2)Web開発では、DjangoおよびFlask Frameworksにより、開発者はアプリケーションを迅速に構築できます。 3)自動化されたスクリプトでは、Pythonのシンプルさと標準ライブラリが理想的になります。

Pythonの主な目的:柔軟性と使いやすさPythonの主な目的:柔軟性と使いやすさApr 17, 2025 am 12:14 AM

Pythonの柔軟性は、マルチパラダイムサポートと動的タイプシステムに反映されていますが、使いやすさはシンプルな構文とリッチ標準ライブラリに由来しています。 1。柔軟性:オブジェクト指向、機能的および手続き的プログラミングをサポートし、動的タイプシステムは開発効率を向上させます。 2。使いやすさ:文法は自然言語に近く、標準的なライブラリは幅広い機能をカバーし、開発プロセスを簡素化します。

Python:汎用性の高いプログラミングの力Python:汎用性の高いプログラミングの力Apr 17, 2025 am 12:09 AM

Pythonは、初心者から上級開発者までのすべてのニーズに適した、そのシンプルさとパワーに非常に好まれています。その汎用性は、次のことに反映されています。1)学習と使用が簡単、シンプルな構文。 2)Numpy、Pandasなどの豊富なライブラリとフレームワーク。 3)さまざまなオペレーティングシステムで実行できるクロスプラットフォームサポート。 4)作業効率を向上させるためのスクリプトおよび自動化タスクに適しています。

1日2時間でPythonを学ぶ:実用的なガイド1日2時間でPythonを学ぶ:実用的なガイドApr 17, 2025 am 12:05 AM

はい、1日2時間でPythonを学びます。 1.合理的な学習計画を作成します。2。適切な学習リソースを選択します。3。実践を通じて学んだ知識を統合します。これらの手順は、短時間でPythonをマスターするのに役立ちます。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。