無料の ChatGPT は使用するのが非常に楽しいですが、このクローズドソース言語モデルの最大の欠点は、オープンソースではないことです。外部の世界では、その背後にあるトレーニング データを理解することができず、ユーザーの情報が漏洩するかどうかもわかりません。その後、産学が共同してLLaMAなどの一連のアルパカモデルをオープンソース化した。
最近、Nature Worldview コラムに記事が掲載されました。ニューヨーク大学の政治とデータ サイエンスの教授、アーサー スパーリングは、オープンソース モデルをもっと使用するよう皆さんに呼び掛けました。実験結果は再現可能であり、学術倫理を遵守します。
重要なのは、ある日 OpenAI が不満を抱いて言語モデル インターフェイスを閉じた場合、または価格を上げるために閉鎖された独占に依存した場合、ユーザーは無力な一文しか言えないということです。 , 「結局、学者は資本に負けたのだ」。
研究者は商用モデルの誘惑を避け、再現性を確保するために協力して透明性のある大規模な言語モデルを開発する必要があります。
オープンソースを受け入れ、独占を拒否する新しい大規模言語モデル (LLM) が毎日立ち上げられ、その作成者や学術コミュニティの関係者がコメントするようです。人間と流暢にコミュニケーションする能力は豊富で、たとえば、ユーザーのコード変更、推薦状の作成、記事の要約の作成などを手伝うことができます。
これらのモデルを使用し、その使用方法を教えている政治科学者およびデータ科学者として、学者は注意する必要があると思います。なぜなら、現在最も人気のある言語モデルは非公開で非公開のままであるためです。企業によって運営されているため、基本モデルに関する具体的な情報は開示されず、モデルの機能を独自にチェックまたは検証するだけなので、研究者や一般の人々はモデルのトレーニングにどのようなファイルが使用されたか知りません。
言語モデルを自分の研究プロセスに急いで組み込むと、問題が発生し、苦労して勝ち取った「研究倫理」や「結果の再現性」の進歩が脅かされる可能性があります。
研究者は商用モデルに依存できないだけでなく、透明性があり、特定の企業の利益に依存しないオープンソースの大規模言語モデルを開発するために協力する必要もあります。
商用モデルは非常に便利で、そのまま使用できますが、オープンソース言語モデルへの投資は歴史的な傾向です。開発を促進する方法を見つけるだけでなく、モデルを将来の研究に適用します。
私は、オープンソース統計ソフトウェアの開発の歴史と同様に、言語モデル ツールの将来はオープンソースになるに違いないと楽観的に見積もっています。商用統計ソフトウェアは当初非常に人気がありましたが、現在はほぼすべてのコミュニティはすべて、R や Python などのオープンソース プラットフォームを使用しています。
たとえば、オープンソース言語モデルである BLOOM は、昨年 7 月にリリースされました。その開発チームである Hugging Face は、ニューヨークに本社を置く人工知能企業であり、1,000 以上の企業と協力しています。ボランティアと研究者によって共同で構築されており、研究開発資金の一部はフランス政府から提供されており、他のチームも大規模な言語モデルのオープンソース化に熱心に取り組んでいます。
このようなオープンソース プロジェクトは素晴らしいと思いますが、さらなる協力と国際的なリソースと専門知識の共有も必要です。
大規模な言語モデルをオープンソース化するチームは、通常、大企業ほど資金が豊富ではなく、開発チームは、この分野の最新の進歩を追跡するために業務を継続する必要もあります。分野の発展が速すぎる ほとんどの言語モデルでさえ、導入されてから数週間または数か月で時代遅れになります。
したがって、オープンソースに関わる学者が増えれば増えるほど、最終的なオープンソース モデルはより良いものになるでしょう。
クローズドソースの商用言語モデルの所有者はいつでも製品やトレーニング データを変更でき、問題が発生する可能性があるため、オープンソース LLM の使用は「再現可能な研究」にとって非常に重要です。生成された結果。
たとえば、ある研究グループが、商用言語モデルによって提案された文言が臨床医と患者とのより効果的なコミュニケーションに役立つかどうかをテストする論文を発表するかもしれません。別のグループがその研究を再現しようとした場合、誰が基本的な表現をしているか知っていますか?モデルの学習データは当時のままですか?このモデルが現在も稼働しているかどうかさえ不明です。
GPT-3 (これまで研究者がよく使用していた補助ツール) は、GPT-4 に置き換えられました。GPT-3 インターフェイスに基づくすべての研究は、おそらく不可能になります。企業にとって、古いモデルを稼働し続けることは優先事項ではありません。
対照的に、オープンソース LLM を使用すると、研究者はモデルの内部アーキテクチャ、重みを表示し、モデルの動作方法を理解し、コードをカスタマイズし、エラーを指摘することができます。これらの詳細には、モデルの調整機能が含まれます。モデルをトレーニングするためのパラメーターとデータ、コミュニティの参加と監視はすべて、このモデルを長期的に堅牢に保つのに役立ちます。
科学研究における商用言語モデルの使用は、これらのモデルのトレーニングに使用されるテキストが不明であり、ソーシャル メディア プラットフォーム上のユーザーが含まれている可能性があるため、研究倫理にも悪影響を及ぼします。子どもたちが書いた内容。
公開テキストを作成している人はプラットフォームの利用規約に同意している可能性がありますが、これは研究者が望んでいるインフォームド・コンセントの標準ではない可能性があります。
私の意見では、科学者は研究でこれらのモデルをできるだけ使用しないようにすべきです。私たちはオープンな言語モデルに移行し、それを他の人に広めるべきです。
また、学者、特にソーシャルメディアで多くのフォロワーを抱えている学者は、他の人に市販モデルの使用を勧めるべきではないと思います。なぜなら、価格が高騰したり会社が倒産したりした場合、研究者たちは、この技術を同僚に宣伝したことを後悔するかもしれません。
研究者は現在、Facebook の親会社 Meta によってオープンソース化されている LLaMA など、民間組織が作成したオープン言語モデルを利用できます。当初はユーザーの申請とレビューに基づいて発行されました。しかし、モデルの完全版はその後オンラインで漏洩しました。Meta のオープン言語モデル OPT-175 B
も利用可能です。長期的な欠点は、これらのモデルのリリースも依存していることです。会社の善意に大きく依存していますが、これは不安定な状況です。
これに加えて、言語モデルを扱う学者の行動規範や、それに対応する規制措置も必要ですが、これらにはすべて時間がかかります。政治学者、私はこれらの規制は最初は非常に不完全であり、効果が出るまでに時間がかかると予想しています。
同時に、CERN (素粒子物理学国際機関) など、研究用のオープンソース言語モデルをトレーニングする大規模な共同プロジェクトへの支援が緊急に必要です。政府は次のようにすべきです。助成金を通じて資金を増やす。
この分野は電光石火のスピードで進化しており、国内外の支援の調整を今すぐ始める必要があります。
科学コミュニティは、結果として得られるモデルのリスクを評価できる必要があり、一般公開には慎重になる必要がありますが、オープンな環境が正しいことであることは明らかです。する。
以上がChatGPT の使用を減らし、オープンソースをもっとサポートしてください。ニューヨーク大学ネイチャー教授が執筆:科学の未来のためにの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ジョン・ロールズの独創的な1971年の著書「正義の理論」で、彼は私たちが今日のAIデザインの核となり、意思決定を使用するべきであるという思考実験を提案しました:無知のベール。この哲学は、公平性を理解するための簡単なツールを提供し、リーダーがこの理解を使用してAIを公平に設計および実装するための青写真を提供します。 あなたが新しい社会のルールを作っていると想像してください。しかし、前提があります。この社会でどのような役割を果たすかは事前にわかりません。過半数または限界少数派に属している、金持ちまたは貧弱、健康、または障害者になることがあります。この「無知のベール」の下で活動することで、ルールメーカーが自分自身に利益をもたらす決定を下すことができません。それどころか、人々はより公衆を策定する意欲があります

ロボットプロセスオートメーション(RPA)を専門とする多くの企業は、繰り返しタスクを自動化するためのボットを提供しています。 一方、プロセスマイニング、オーケストレーション、インテリジェントドキュメント処理スペシャル

AIの未来は、単純な単語の予測と会話シミュレーションを超えて動いています。 AIエージェントは出現しており、独立したアクションとタスクの完了が可能です。 このシフトは、AnthropicのClaudeのようなツールですでに明らかです。 AIエージェント:研究a

急速な技術の進歩は、仕事の未来に関する将来の見通しの視点を必要とします。 AIが単なる生産性向上を超えて、私たちの社会構造の形成を開始するとどうなりますか? Topher McDougalの今後の本、Gaia Wakes:

多くの場合、Harmonized System(HS)などのシステムからの「HS 8471.30」などの複雑なコードを含む製品分類は、国際貿易と国内販売に不可欠です。 これらのコードは、すべてのINVに影響を与える正しい税申請を保証します

データセンターと気候技術投資におけるエネルギー消費の将来 この記事では、AIが推進するデータセンターのエネルギー消費の急増と気候変動への影響を調査し、この課題に対処するための革新的なソリューションと政策の推奨事項を分析します。 エネルギー需要の課題:大規模で超大規模なデータセンターは、数十万の普通の北米の家族の合計に匹敵する巨大な力を消費し、新たなAIの超大規模なセンターは、これよりも数十倍の力を消費します。 2024年の最初の8か月で、Microsoft、Meta、Google、Amazonは、AIデータセンターの建設と運用に約1,250億米ドルを投資しました(JP Morgan、2024)(表1)。 エネルギー需要の成長は、挑戦と機会の両方です。カナリアメディアによると、迫り来る電気

生成AIは、映画とテレビの制作に革命をもたらしています。 LumaのRay 2モデル、滑走路のGen-4、OpenaiのSora、GoogleのVEO、その他の新しいモデルは、前例のない速度で生成されたビデオの品質を向上させています。これらのモデルは、複雑な特殊効果と現実的なシーンを簡単に作成できます。短いビデオクリップやカメラ認知モーション効果も達成されています。これらのツールの操作と一貫性を改善する必要がありますが、進歩の速度は驚くべきものです。 生成ビデオは独立した媒体になりつつあります。アニメーション制作が得意なモデルもあれば、実写画像が得意なモデルもあります。 AdobeのFireflyとMoonvalleyのMAであることは注目に値します

ChatGptユーザーエクスペリエンスは低下します:それはモデルの劣化ですか、それともユーザーの期待ですか? 最近、多数のCHATGPT有料ユーザーがパフォーマンスの劣化について不満を述べています。 ユーザーは、モデルへの応答が遅く、答えが短い、助けの欠如、さらに多くの幻覚を報告しました。一部のユーザーは、ソーシャルメディアに不満を表明し、ChatGptは「お世辞になりすぎて」、重要なフィードバックを提供するのではなく、ユーザービューを検証する傾向があることを指摘しています。 これは、ユーザーエクスペリエンスに影響を与えるだけでなく、生産性の低下やコンピューティングリソースの無駄など、企業の顧客に実際の損失をもたらします。 パフォーマンスの劣化の証拠 多くのユーザーは、特にGPT-4などの古いモデル(今月末にサービスから廃止される)で、ChatGPTパフォーマンスの大幅な分解を報告しています。 これ


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

ホットトピック









