検索
ホームページバックエンド開発Python チュートリアルPython を使用してリストの重複排除を実装するにはどうすればよいですか?

方法

## 1. 新建列表,如果新列表中不存在,则添加到新列表。 def unique(data):     new_list = []     for item in data:         if item not in new_list:             new_list.append(item)     return new_list   # test data = ['a', 'a', 1, 1, 2, 2, 'b', 'b', 2, 1] start_time = time.time() print("new_list + not in data:", unique(data)) print("time:" + str((time.time() - start_time) * 1000) + " ms")  # result $ python -V Python 2.7.16 $ python unique.py  ('for list + not in. data:', ['a', 1, 2, 'b']) time:0.0441074371338 ms  ## 2. 新建列表。根据下标判断是否存在新列表中,如果新列表中不存在则添加到新列表。 def unique(data):     new_list = []     for i in range(len(data)):         if data[i] not in new_list:             new_list.append(data[i])     return new_list   ## 2.1 新建列表,使用列表推导来去重。是前一种的简写。 def unique(data):     new_list = []     [new_list.append(i) for i in data if not i in new_list]     return new_list  # test data = ['a', 'a', 1, 1, 2, 2, 'b', 'b', 2, 1] start_time = time.time() print("for range + not in. data:", unique(data)) print("time:" + str((time.time() - start_time) * 1000) + " ms")  ## 3. 通过index找不到该项,则追加到新列表中。index找不到会报错,因此放在异常处理里。 def unique(data):     new_list = []     for i in range(len(data)):         item = data[i]         try:             if (new_list.index(item)  0):         l -= 1         i = l         while i > 0:             i -= 1             if data[i] == data[l]:                 del data[l]                 break     return data  # test data = ['a', 'a', 1, 1, 2, 2, 'b', 'b', 2, 1] start_time = time.time() print("one list while. last -> first result. data:", unique(data)) print("time:" + str((time.time() - start_time) * 1000) + " ms")  ## 6. 在原有列表上移除重复项目。自前往后遍历,逐个与后面项比较,如果值相同且下标相同,则移除当前项。 def unique(data):     l = len(data)     i = 0     while i  last result. data:", unique(data)) print("time:" + str((time.time() - start_time) * 1000) + " ms")  ## 7. 新建列表。遍历列表,利用index比较出现的位置,如果出现在第一次的位置则追加到新数组。 def unique(data):     new_list = []     for i in range(len(data)):         if i == data.index(data[i]):             new_list.append(data[i])     return new_list   # test data = ['a', 'a', 1, 1, 2, 2, 'b', 'b', 2, 1] start_time = time.time() print("for range + index. data:", unique(data)) print("time:" + str((time.time() - start_time) * 1000) + " ms")  ## 8. 利用字典属性唯一性来实现去重复。 def unique(data):     obj = {}     for item in data:         obj[item] = item     return obj.values()   # test data = ['a', 'a', 1, 1, 2, 2, 'b', 'b', 2, 1] start_time = time.time() print("list + dict:", unique(data)) print("time:" + str((time.time() - start_time) * 1000) + " ms")  ## 或者直接通过dict.fromkeys来实现 print("dict fromkeys:", dict.fromkeys(data).keys())  ## 9. 利用filter函数,即把不符合条件的过滤掉。这里filter不支持下标,因此需要借助外部列表存储不重复项 def uniq(item):     i = data.index(item)     if (item not in new_list):         new_list.append(item)         return True     return False def unique(item):     if obj.get(item) == None:         obj[item] = item         return True     return False   # test data = ['a', 'a', 1, 1, 2, 2, 'b', 'b', 2, 1] start_time = time.time() new_list = [] print('filter + list + not in: ', filter(uniq, data)) print("time:" + str((time.time() - start_time) * 1000) + " ms")  ## 10. 利用字典结合过滤来实现去重复。 def unique(item):     if obj.get(item) == None:         obj[item] = item         return True     return False   # test data = ['a', 'a', 1, 1, 2, 2, 'b', 'b', 2, 1] start_time = time.time() obj = {} print("filter + dict + get:", filter(unique, data)) print("time:" + str((time.time() - start_time) * 1000) + " ms")  ## 11. 利用map来实现去重复。与map与filter类似,是一个高阶函数。可以针对其中项逐个修改操作。 ## 与filter不同map会保留原有项目,并不会删除,因此值可以改为None,然后再过滤掉。 def unique(item):     if item not in new_list:         new_list.append(item)         return item     return None   # test data = ['a', 'a', 1, 1, 2, 2, 'b', 'b', 2, 1] new_list = [] start_time = time.time()  print("list from Map:", filter(lambda item: item != None, map(unique, data))) print("time:" + str((time.time() - start_time) * 1000) + " ms")  ## 12. 利用set数据结构里key的唯一性来去重复 data = ['a', 'a', 1, 1, 2, 2, 'b', 'b', 2, 1] print("from Set:", list(set(data))) print("time:" + str((time.time() - start_time) * 1000) + " ms")  ## 13. 提前排序,从后向前遍历,将当前项与前一项对比,如果重复则移除当前项 def unique(data):     data.sort()     l = len(data)     while (l > 0):         l -= 1         if (data[l] == data[l - 1]):             data.remove(data[l])     return data   # test data = ['a', 'a', 1, 1, 2, 2, 'b', 'b', 2, 1] start_time = time.time() print("sort + remove:", unique(data)) print("time:" + str((time.time() - start_time) * 1000) + " ms")  ## 14. 提前排序,自前往后遍历,将当前项与后一项对比,如果重复则移除当前项 def unique(data):     """      in python 3: TypeError: ' 1):         l -= 1         if (data[last] == data[l - 1]):             is_repeat = True             break      if (is_repeat):         del data[last]      return recursion_unique(data, len - 1)   # test data = ['a', 'a', 1, 1, 2, 2, 'b', 'b', 2, 1] start_time = time.time() print("recursion_unique:", recursion_unique(data, len(data))) print("time:" + str((time.time() - start_time) * 1000) + " ms")  ## 17. 利用递归调用来去重复的另外一种方式。递归自后往前逐个调用,当长度为1时终止。 ## 与上一个递归不同,这里将不重复的项目作为结果拼接起来 def recursion_unique_new(data, len):     if (len  1):         l -= 1         if (data[last] == data[l - 1]):             is_repeat = True             break      if (is_repeat):         del data[last:]         result = []     else:         result = [data[last]]      return recursion_unique_new(data, len - 1) + result   # test data = ['a', 'a', 1, 1, 2, 2, 'b', 'b', 2, 1] start_time = time.time() print("recursion_unique_new:", recursion_unique_new(data, len(data))) print("time:" + str((time.time() - start_time) * 1000) + " ms")  ## 18. 利用numpy lib库. 需提前安装 `pip install numpy` import numpy as np   def unique(data):     res = np.array(data)     return list(np.unique(res))   # test data = ['a', 'a', 1, 1, 2, 2, 'b', 'b', 2, 1] start_time = time.time() print("import numpy as np.unique:", unique(data)) print("time:" + str((time.time() - start_time) * 1000) + " ms")
Python を使用してリストの重複排除を実装するにはどうすればよいですか?

以上がPython を使用してリストの重複排除を実装するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は亿速云で複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
Pythonの主な目的:柔軟性と使いやすさPythonの主な目的:柔軟性と使いやすさApr 17, 2025 am 12:14 AM

Pythonの柔軟性は、マルチパラダイムサポートと動的タイプシステムに反映されていますが、使いやすさはシンプルな構文とリッチ標準ライブラリに由来しています。 1。柔軟性:オブジェクト指向、機能的および手続き的プログラミングをサポートし、動的タイプシステムは開発効率を向上させます。 2。使いやすさ:文法は自然言語に近く、標準的なライブラリは幅広い機能をカバーし、開発プロセスを簡素化します。

Python:汎用性の高いプログラミングの力Python:汎用性の高いプログラミングの力Apr 17, 2025 am 12:09 AM

Pythonは、初心者から上級開発者までのすべてのニーズに適した、そのシンプルさとパワーに非常に好まれています。その汎用性は、次のことに反映されています。1)学習と使用が簡単、シンプルな構文。 2)Numpy、Pandasなどの豊富なライブラリとフレームワーク。 3)さまざまなオペレーティングシステムで実行できるクロスプラットフォームサポート。 4)作業効率を向上させるためのスクリプトおよび自動化タスクに適しています。

1日2時間でPythonを学ぶ:実用的なガイド1日2時間でPythonを学ぶ:実用的なガイドApr 17, 2025 am 12:05 AM

はい、1日2時間でPythonを学びます。 1.合理的な学習計画を作成します。2。適切な学習リソースを選択します。3。実践を通じて学んだ知識を統合します。これらの手順は、短時間でPythonをマスターするのに役立ちます。

Python vs. C:開発者の長所と短所Python vs. C:開発者の長所と短所Apr 17, 2025 am 12:04 AM

Pythonは迅速な開発とデータ処理に適していますが、Cは高性能および基礎となる制御に適しています。 1)Pythonは、簡潔な構文を備えた使いやすく、データサイエンスやWeb開発に適しています。 2)Cは高性能で正確な制御を持ち、ゲームやシステムのプログラミングでよく使用されます。

Python:時間のコミットメントと学習ペースPython:時間のコミットメントと学習ペースApr 17, 2025 am 12:03 AM

Pythonを学ぶのに必要な時間は、人によって異なり、主に以前のプログラミングの経験、学習の動機付け、学習リソースと方法、学習リズムの影響を受けます。現実的な学習目標を設定し、実用的なプロジェクトを通じて最善を尽くします。

Python:自動化、スクリプト、およびタスク管理Python:自動化、スクリプト、およびタスク管理Apr 16, 2025 am 12:14 AM

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

Pythonと時間:勉強時間を最大限に活用するPythonと時間:勉強時間を最大限に活用するApr 14, 2025 am 12:02 AM

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Python:ゲーム、GUIなどPython:ゲーム、GUIなどApr 13, 2025 am 12:14 AM

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

PhpStorm Mac バージョン

PhpStorm Mac バージョン

最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

Dreamweaver Mac版

Dreamweaver Mac版

ビジュアル Web 開発ツール

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール