検索
ホームページバックエンド開発Python チュートリアルPython を使用して Hive データベースを読み取るにはどうすればよいですか?

ハイブ データベースを読み取るための実際のビジネス コード

import logging
import pandas as pd
from impala.dbapi import connect
import sqlalchemy
from sqlalchemy.orm import sessionmaker
import os
import time
import os
import datetime
from dateutil.relativedelta import relativedelta
from typing import Dict, List
import logging
import threading
import pandas as pd
import pickle
class HiveHelper(object):
    def __init__(
        self,
        host='10.2.32.22',
        port=21051,
        database='ur_ai_dw',
        auth_mechanism='LDAP',
        user='urbi',
        password='Ur#730xd',
        logger:logging.Logger=None
        ):
        self.host = host
        self.port = port
        self.database = database
        self.auth_mechanism = auth_mechanism
        self.user = user
        self.password = password
        self.logger = logger
        self.impala_conn = None
        self.conn = None
        self.cursor = None
        self.engine = None
        self.session = None
    def create_table_code(self, file_name):
        '''创建表类代码'''
        os.system(f'sqlacodegen {self.connection_str} > {file_name}')
        return self.conn
    def get_conn(self):
        '''创建连接或获取连接'''
        if self.conn is None:
            engine = self.get_engine()
            self.conn = engine.connect()
        return self.conn
    def get_impala_conn(self):
        '''创建连接或获取连接'''
        if self.impala_conn is None:
            self.impala_conn = connect(
                host=self.host,
                port=self.port,
                database=self.database,
                auth_mechanism=self.auth_mechanism,
                user=self.user,
                password=self.password
                )
        return self.impala_conn
    def get_engine(self):
        '''创建连接或获取连接'''
        if self.engine is None:
            self.engine = sqlalchemy.create_engine('impala://', creator=self.get_impala_conn)
        return self.engine
    def get_cursor(self):
        '''创建连接或获取连接'''
        if self.cursor is None:
            self.cursor = self.conn.cursor()
        return self.cursor
    def get_session(self) -> sessionmaker:
        '''创建连接或获取连接'''
        if self.session is None:
            engine = self.get_engine()
            Session = sessionmaker(bind=engine)
            self.session = Session()
        return self.session
    def close_conn(self):
        '''关闭连接'''
        if self.conn is not None:
            self.conn.close()
            self.conn = None
        self.dispose_engine()
        self.close_impala_conn()
    def close_impala_conn(self):
        '''关闭impala连接'''
        if self.impala_conn is not None:
            self.impala_conn.close()
            self.impala_conn = None
    def close_session(self):
        '''关闭连接'''
        if self.session is not None:
            self.session.close()
            self.session = None
        self.dispose_engine()
    def dispose_engine(self):
        '''释放engine'''
        if self.engine is not None:
            # self.engine.dispose(close=False)
            self.engine.dispose()
            self.engine = None
    def close_cursor(self):
        '''关闭cursor'''
        if self.cursor is not None:
            self.cursor.close()
            self.cursor = None
    def get_data(self, sql, auto_close=True) -> pd.DataFrame:
        '''查询数据'''
        conn = self.get_conn()
        data = None
        try:
            # 异常重试3次
            for i in range(3):
                try:
                    data = pd.read_sql(sql, conn)
                    break
                except Exception as ex:
                    if i == 2:
                        raise ex # 往外抛出异常
                    time.sleep(60) # 一分钟后重试
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            if auto_close:
                self.close_conn()
        return data
pass
class VarsHelper():
    def __init__(self, save_dir, auto_save=True):
        self.save_dir = save_dir
        self.auto_save = auto_save
        self.values = {}
        if not os.path.exists(os.path.dirname(self.save_dir)):
            os.makedirs(os.path.dirname(self.save_dir))
        if os.path.exists(self.save_dir):
            with open(self.save_dir, 'rb') as f:
                self.values = pickle.load(f)
                f.close()
    def set_value(self, key, value):
        self.values[key] = value
        if self.auto_save:
            self.save_file()
    def get_value(self, key):
        return self.values[key]
    def has_key(self, key):
        return key in self.values.keys()
    def save_file(self):
        with open(self.save_dir, 'wb') as f:
            pickle.dump(self.values, f)
            f.close()
pass
class GlobalShareArgs():
    args = {
        "debug": False
    }
    def get_args():
        return GlobalShareArgs.args
    def set_args(args):
        GlobalShareArgs.args = args
    def set_args_value(key, value):
        GlobalShareArgs.args[key] = value
    def get_args_value(key, default_value=None):
        return GlobalShareArgs.args.get(key, default_value)
    def contain_key(key):
        return key in GlobalShareArgs.args.keys()
    def update(args):
        GlobalShareArgs.args.update(args)
pass
class ShareArgs():
    args = {
        "labels_dir":"./hjx/shop_group/month_w_amt/data/labels", # 标签目录
        "labels_output_dir":"./hjx/shop_group/month_w_amt/data/labels_output", # 聚类导出标签目录
        "common_datas_dir":"./hjx/data", # 共用数据目录。ur_bi_dw的公共
        "only_predict": False, # 只识别,不训练
        "delete_model": True, # 先删除模型,仅在训练时使用
        "export_excel": False, # 导出excel
        "classes": 12, # 聚类数
        "batch_size": 16,
        "hidden_size": 32,
        "max_nrof_epochs": 100,
        "learning_rate": 0.0005,
        "loss_type": "categorical_crossentropy",
        "avg_model_num": 10,
        "steps_per_epoch": 4.0, # 4.0
        "lr_callback_patience": 4, 
        "lr_callback_cooldown": 1,
        "early_stopping_callback_patience": 6,
        "get_data": True,
    }
    def get_args():
        return ShareArgs.args
    def set_args(args):
        ShareArgs.args = args
    def set_args_value(key, value):
        ShareArgs.args[key] = value
    def get_args_value(key, default_value=None):
        return ShareArgs.args.get(key, default_value)
    def contain_key(key):
        return key in ShareArgs.args.keys()
    def update(args):
        ShareArgs.args.update(args)
pass
class UrBiGetDatasBase():
    # 线程锁列表,同保存路径共用锁
    lock_dict:Dict[str, threading.Lock] = {}
    # 时间列表,用于判断是否超时
    time_dict:Dict[str, datetime.datetime] = {}
    # 用于记录是否需要更新超时时间
    get_data_timeout_dict:Dict[str, bool] = {}
    def __init__(
        self,
        host='10.2.32.22',
        port=21051,
        database='ur_ai_dw',
        auth_mechanism='LDAP',
        user='urbi',
        password='Ur#730xd',
        save_dir=None,
        logger:logging.Logger=None,
        ):
        self.save_dir = save_dir
        self.logger = logger
        self.db_helper = HiveHelper(
            host=host,
            port=port,
            database=database,
            auth_mechanism=auth_mechanism,
            user=user,
            password=password,
            logger=logger
            )
        # 创建子目录
        if self.save_dir is not None and not os.path.exists(self.save_dir):
            os.makedirs(self.save_dir)
        self.vars_helper = None
        if GlobalShareArgs.get_args_value('debug'):
            self.vars_helper = VarsHelper('./hjx/data/vars/UrBiGetDatas') 
    def close(self):
        '''关闭连接'''
        self.db_helper.close_conn()
    def get_last_time(self, key_name) -> bool:
        '''获取是否超时'''
        # 转静态路径,确保唯一性
        key_name = os.path.abspath(key_name)
        if self.vars_helper is not None and self.vars_helper.has_key('UrBiGetDatasBase.time_list'):
            UrBiGetDatasBase.time_dict = self.vars_helper.get_value('UrBiGetDatasBase.time_list')
        timeout = 12 # 12小时
        if GlobalShareArgs.get_args_value('debug'):
            timeout = 24 # 24小时
        get_data_timeout = False
        if key_name not in UrBiGetDatasBase.time_dict.keys() or (datetime.datetime.today() - UrBiGetDatasBase.time_dict[key_name]).total_seconds()>(timeout*60*60):
            self.logger.info('超时%d小时,重新查数据:%s', timeout, key_name)
            # UrBiGetDatasBase.time_list[key_name] = datetime.datetime.today()
            get_data_timeout = True
        else:
            self.logger.info('未超时%d小时,跳过查数据:%s', timeout, key_name)
        # if self.vars_helper is not None :
        #     self.vars_helper.set_value('UrBiGetDatasBase.time_list', UrBiGetDatasBase.time_list)
        UrBiGetDatasBase.get_data_timeout_dict[key_name] = get_data_timeout
        return get_data_timeout
    def save_last_time(self, key_name):
        '''更新状态超时'''
        # 转静态路径,确保唯一性
        key_name = os.path.abspath(key_name)
        if UrBiGetDatasBase.get_data_timeout_dict[key_name]:
            UrBiGetDatasBase.time_dict[key_name] = datetime.datetime.today()
        if self.vars_helper is not None :
            UrBiGetDatasBase.time_dict[key_name] = datetime.datetime.today()
            self.vars_helper.set_value('UrBiGetDatasBase.time_list', UrBiGetDatasBase.time_dict)
    def get_lock(self, key_name) -> threading.Lock:
        '''获取锁'''
        # 转静态路径,确保唯一性
        key_name = os.path.abspath(key_name)
        if key_name not in UrBiGetDatasBase.lock_dict.keys():
            UrBiGetDatasBase.lock_dict[key_name] = threading.Lock()
        return UrBiGetDatasBase.lock_dict[key_name]
    def get_data_of_date(
        self,
        save_dir,
        sql,
        sort_columns:List[str],
        del_index_list=[-1], # 删除最后下标
        start_date = datetime.datetime(2017, 1, 1), # 开始时间
        offset = relativedelta(months=3), # 时间间隔
        date_format_fun = lambda d: '%04d%02d01' % (d.year, d.month), # 查询语句中替代时间参数的格式化
        filename_format_fun = lambda d: '%04d%02d.csv' % (d.year, d.month), # 查询语句中替代时间参数的格式化
        stop_date = '20700101', # 超过时间则停止
        data_format_fun = None, # 格式化数据
        ):
        '''分时间增量读取数据'''
        # 创建文件夹
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        else:
            #删除最后一个文件
            file_list = os.listdir(save_dir)
            if len(file_list)>0:
                file_list.sort()
                for del_index in del_index_list:
                    os.remove(os.path.join(save_dir,file_list[del_index]))
                    print('删除最后一个文件:', file_list[del_index])
        select_index = -1
        # start_date = datetime.datetime(2017, 1, 1)
        while True:
            end_date = start_date + offset
            start_date_str = date_format_fun(start_date)
            end_date_str = date_format_fun(end_date)
            self.logger.info('date: %s-%s', start_date_str, end_date_str)
            file_path = os.path.join(save_dir, filename_format_fun(start_date))
            # self.logger.info('file_path: %s', file_path)
            if not os.path.exists(file_path):
                data:pd.DataFrame = self.db_helper.get_data(sql % (start_date_str, end_date_str))
                if data is None:
                    break
                self.logger.info('data: %d', len(data))
                # self.logger.info('data: %d', data.columns)
                if len(data)>0:
                    select_index+=1
                    if data_format_fun is not None:
                        data = data_format_fun(data)
                    # 排序
                    data = data.sort_values(sort_columns)
                    data.to_csv(file_path)
                elif select_index!=-1:
                    break
                elif stop_date < start_date_str:
                    raise Exception("读取数据异常,时间超出最大值!")
            start_date = end_date
pass
class UrBiGetDatas(UrBiGetDatasBase):
    def __init__(
        self,
        host=&#39;10.2.32.22&#39;,
        port=21051,
        database=&#39;ur_ai_dw&#39;,
        auth_mechanism=&#39;LDAP&#39;,
        user=&#39;urbi&#39;,
        password=&#39;Ur#730xd&#39;,
        save_dir=&#39;./hjx/data/ur_bi_dw_data&#39;,
        logger:logging.Logger=None
        ):
        self.save_dir = save_dir
        self.logger = logger
        super().__init__(
            host=host,
            port=port,
            database=database,
            auth_mechanism=auth_mechanism,
            user=user,
            password=password,
            save_dir=save_dir,
            logger=logger
            )
    def get_dim_date(self):
        &#39;&#39;&#39;日期数据&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;ur_bi_dw.dim_date.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            sql = &#39;SELECT * FROM ur_bi_dw.dim_date&#39;
            data:pd.DataFrame = self.db_helper.get_data(sql)
            columns = list(data.columns)
            columns = {c:&#39;dim_date.&#39;+c for c in columns}
            data = data.rename(columns=columns)
            data = data.sort_values([&#39;dim_date.date_key&#39;])
            data.to_csv(file_path)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_dim_shop(self):
        &#39;&#39;&#39;店铺数据&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;ur_bi_dw.dim_shop.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            sql = &#39;SELECT * FROM ur_bi_dw.dim_shop&#39;
            data:pd.DataFrame = self.db_helper.get_data(sql)
            columns = list(data.columns)
            columns = {c:&#39;dim_shop.&#39;+c for c in columns}
            data = data.rename(columns=columns)
            data = data.sort_values([&#39;dim_shop.shop_no&#39;])
            data.to_csv(file_path)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_dim_vip(self):
        &#39;&#39;&#39;会员数据&#39;&#39;&#39;
        sub_dir = os.path.join(self.save_dir,&#39;vip_no&#39;)
        now_lock = self.get_lock(sub_dir)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(sub_dir):
                return
            sql = &#39;&#39;&#39;SELECT dv.*, dd.date_key, dd.date_name2 
            FROM ur_bi_dw.dim_vip as dv
            INNER JOIN ur_bi_dw.dim_date as dd
            ON dv.card_create_date=dd.date_name2 
            where dd.date_key >= %s
            and dd.date_key < %s&#39;&#39;&#39;
            # data:pd.DataFrame = self.db_helper.get_data(sql)
            sort_columns = [&#39;dv.vip_no&#39;]
            # TODO:
            self.get_data_of_date(
                save_dir=sub_dir,
                sql=sql,
                sort_columns=sort_columns,
                start_date=datetime.datetime(2017, 1, 1), # 开始时间
                offset=relativedelta(years=1)
            )
            # 更新超时时间
            self.save_last_time(sub_dir)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_weather(self):
        &#39;&#39;&#39;天气数据&#39;&#39;&#39;
        sub_dir = os.path.join(self.save_dir,&#39;weather&#39;)
        now_lock = self.get_lock(sub_dir)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(sub_dir):
                return
            sql = """
            select weather.* from ur_bi_ods.ods_base_weather_data_1200 as weather
            where weather.date_key>=%s and weather.date_key<%s
            """
            sort_columns = [&#39;weather.date_key&#39;,&#39;weather.areaid&#39;]
            def data_format_fun(data):
                columns = list(data.columns)
                columns = {c:&#39;weather.&#39;+c for c in columns}
                data = data.rename(columns=columns)
                return data
            self.get_data_of_date(
                save_dir=sub_dir,
                sql=sql,
                sort_columns=sort_columns,
                del_index_list=[-2, -1], # 删除最后下标
                data_format_fun=data_format_fun,
            )
            # 更新超时时间
            self.save_last_time(sub_dir)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_weather_city(self):
        &#39;&#39;&#39;天气城市数据&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;ur_bi_dw.weather_city.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            sql = &#39;SELECT * FROM ur_bi_dw.dim_weather_city as weather_city&#39;
            data:pd.DataFrame = self.db_helper.get_data(sql)
            columns = list(data.columns)
            columns = {c:&#39;weather_city.&#39;+c for c in columns}
            data = data.rename(columns=columns)
            data.to_csv(file_path)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_dim_goods(self):
        &#39;&#39;&#39;货品数据&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;ur_bi_dw.dim_goods.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            sql = &#39;SELECT * FROM ur_bi_dw.dim_goods&#39;
            data:pd.DataFrame = self.db_helper.get_data(sql)
            columns = list(data.columns)
            columns = {c:&#39;dim_goods.&#39;+c for c in columns}
            data = data.rename(columns=columns)
            data.to_csv(file_path)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_dim_goods_market_shop_date(self):
        &#39;&#39;&#39;店铺商品生命周期数据&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;ur_bi_dw.dim_goods_market_shop_date.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            # sql = &#39;SELECT * FROM ur_bi_dw.dim_goods_market_shop_date as goods_shop_date&#39;
            sql = &#39;&#39;&#39;
            select shop_no, sku_no, shop_market_date, lifecycle_end_date, lifecycle_days
            FROM ur_bi_dw.dim_goods_market_shop_date
            where lifecycle_end_date is not null
            &#39;&#39;&#39;
            data:pd.DataFrame = self.db_helper.get_data(sql)
            columns = list(data.columns)
            columns = {c:c.replace(&#39;lifecycle_end_date.&#39;,&#39;&#39;) for c in columns}
            data = data.rename(columns=columns)
            data = data.sort_values([&#39;shop_market_date&#39;])
            data.to_csv(file_path, index=False)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_dim_goods_market_date(self):
        &#39;&#39;&#39;全国商品生命周期数据&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;ur_bi_dw.dim_goods_market_date.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            sql = &#39;&#39;&#39;
            select * FROM ur_bi_dw.dim_goods_market_date
            &#39;&#39;&#39;
            data:pd.DataFrame = self.db_helper.get_data(sql)
            columns = list(data.columns)
            columns = {c:&#39;dim_goods_market_date.&#39;+c for c in columns}
            data = data.rename(columns=columns)
            data = data.sort_values([&#39;dim_goods_market_date.sku_no&#39;])
            data.to_csv(file_path, index=False)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_dim_goods_color_dev_sizes(self):
        &#39;&#39;&#39;商品开发码数数据&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;dim_goods_color_dev_sizes.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            # sql = &#39;SELECT * FROM ur_bi_dw.dim_goods_market_shop_date as goods_shop_date&#39;
            sql = &#39;SELECT * FROM ur_bi_dm.dim_goods_color_dev_sizes&#39;
            data:pd.DataFrame = self.db_helper.get_data(sql)
            columns = list(data.columns)
            columns = {c:c.replace(&#39;dim_goods_color_dev_sizes.&#39;,&#39;&#39;) for c in columns}
            data = data.rename(columns=columns)
            data.to_csv(file_path, index=False)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_dwd_daily_sales_size(self):
        &#39;&#39;&#39;实际销售金额&#39;&#39;&#39;
        sub_dir = os.path.join(self.save_dir,&#39;dwd_daily_sales_size_all&#39;)
        now_lock = self.get_lock(sub_dir)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(sub_dir):
                return
            sql = """
            select shop_no,sku_no,date_key,`size`,
                sum(tag_price) as `tag_price`,
                sum(sales_qty) as `sales_qty`,
                sum(sales_tag_amt) as `sales_tag_amt`,
                sum(sales_amt) as `sales_amt`,
                count(0) as `sales_count`
            from ur_bi_dw.dwd_daily_sales_size as sales
            where sales.date_key>=%s and sales.date_key<%s
                and sales.currency_code=&#39;CNY&#39;
            group by shop_no,sku_no,date_key,`size`
            """
            sort_columns = [&#39;date_key&#39;,&#39;shop_no&#39;,&#39;sku_no&#39;]
            self.get_data_of_date(
                save_dir=sub_dir,
                sql=sql,
                sort_columns=sort_columns,
                start_date=datetime.datetime(2017, 1, 1), # 开始时间
            )
            # 更新超时时间
            self.save_last_time(sub_dir)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_dwd_daily_delivery_size(self):
        &#39;&#39;&#39;实际配货金额&#39;&#39;&#39;
        sub_dir = os.path.join(self.save_dir,&#39;dwd_daily_delivery_size_all&#39;)
        now_lock = self.get_lock(sub_dir)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(sub_dir):
                return
            sql = """
            select shop_no,sku_no,date_key,`size`,
                sum(delivery.shop_distr_received_qty) as `shop_distr_received_qty`,
                sum(delivery.shop_distr_received_amt) as `shop_distr_received_amt`,
                sum(delivery.online_distr_received_qty) as `online_distr_received_qty`,
                sum(delivery.online_distr_received_amt) as `online_distr_received_amt`,
                sum(delivery.pr_received_qty) as `pr_received_qty`,
                count(0) as `delivery_count`
            from ur_bi_dw.dwd_daily_delivery_size as delivery
            where delivery.date_key>=%s and delivery.date_key<%s
                and delivery.currency_code=&#39;CNY&#39;
            group by shop_no,sku_no,date_key,`size`
            """
            sort_columns = [&#39;date_key&#39;,&#39;shop_no&#39;,&#39;sku_no&#39;]
            self.get_data_of_date(
                save_dir=sub_dir,
                sql=sql,
                sort_columns=sort_columns,
                start_date=datetime.datetime(2017, 1, 1), # 开始时间
            )
            # 更新超时时间
            self.save_last_time(sub_dir)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_v_last_nation_sales_status(self):
        &#39;&#39;&#39;商品畅滞销数据&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;v_last_nation_sales_status.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            sql = &#39;SELECT * FROM ur_bi_dw.v_last_nation_sales_status&#39;
            data:pd.DataFrame = self.db_helper.get_data(sql)
            columns = list(data.columns)
            columns = {c:c.replace(&#39;v_last_nation_sales_status.&#39;,&#39;&#39;) for c in columns}
            data = data.rename(columns=columns)
            data.to_csv(file_path, index=False)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_dwd_daily_finacial_goods(self):
        &#39;&#39;&#39;商品成本价数据&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;dwd_daily_finacial_goods.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            sql = """
            select t1.sku_no,t1.`size`,t1.cost_tax_incl from ur_bi_dw.dwd_daily_finacial_goods as t1
            inner join (
                select sku_no,`size`,max(date_key) as date_key
                from ur_bi_dw.dwd_daily_finacial_goods
                where currency_code=&#39;CNY&#39; and country_code=&#39;CN&#39;
                group by sku_no,`size`
            ) as t2
            on t2.sku_no=t1.sku_no
                and t2.`size`=t1.`size`
                and t2.date_key=t1.date_key
            where t1.currency_code=&#39;CNY&#39; and t1.country_code=&#39;CN&#39;
            """
            data:pd.DataFrame = self.db_helper.get_data(sql)
            columns = list(data.columns)
            columns = {c:c.replace(&#39;t1.&#39;,&#39;&#39;) for c in columns}
            data = data.rename(columns=columns)
            data.to_csv(file_path, index=False)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_dim_size_group(self):
        &#39;&#39;&#39;尺码映射数据&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;dim_size_group.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            sql = """select * from ur_bi_dw.dim_size_group"""
            data:pd.DataFrame = self.db_helper.get_data(sql)
            columns = list(data.columns)
            columns = {c:c.replace(&#39;dim_size_group.&#39;,&#39;&#39;) for c in columns}
            data = data.rename(columns=columns)
            data.to_csv(file_path, index=False)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
pass
def get_common_datas(
    host=&#39;10.2.32.22&#39;,
    port=21051,
    database=&#39;ur_ai_dw&#39;,
    auth_mechanism=&#39;LDAP&#39;,
    user=&#39;urbi&#39;,
    password=&#39;Ur#730xd&#39;,
    logger:logging.Logger=None):
    # 共用文件
    common_datas_dir = ShareArgs.get_args_value(&#39;common_datas_dir&#39;)
    common_ur_bi_dir = os.path.join(common_datas_dir, &#39;ur_bi_data&#39;)
    ur_bi_get_datas = UrBiGetDatas(
        host=host,
        port=port,
        database=database,
        auth_mechanism=auth_mechanism,
        user=user,
        password=password,
        save_dir=common_ur_bi_dir,
        logger=logger
    )
    try:
        logger.info(&#39;正在查询日期数据...&#39;)
        ur_bi_get_datas.get_dim_date()
        logger.info(&#39;查询日期数据完成!&#39;)
        logger.info(&#39;正在查询店铺数据...&#39;)
        ur_bi_get_datas.get_dim_shop()
        logger.info(&#39;查询店铺数据完成!&#39;)
        logger.info(&#39;正在查询天气数据...&#39;)
        ur_bi_get_datas.get_weather()
        logger.info(&#39;查询天气数据完成!&#39;)
        logger.info(&#39;正在查询天气城市数据...&#39;)
        ur_bi_get_datas.get_weather_city()
        logger.info(&#39;查询天气城市数据完成!&#39;)
        logger.info(&#39;正在查询货品数据...&#39;)
        ur_bi_get_datas.get_dim_goods()
        logger.info(&#39;查询货品数据完成!&#39;)
        logger.info(&#39;正在查询实际销量数据...&#39;)
        ur_bi_get_datas.get_dwd_daily_sales_size()
        logger.info(&#39;查询实际销量数据完成!&#39;)
    except Exception as ex:
        logger.exception(ex)
        raise ex # 往外抛出异常
    finally:
        ur_bi_get_datas.close()
pass
class CustomUrBiGetDatas(UrBiGetDatasBase):
    def __init__(
        self,
        host=&#39;10.2.32.22&#39;,
        port=21051,
        database=&#39;ur_ai_dw&#39;,
        auth_mechanism=&#39;LDAP&#39;,
        user=&#39;urbi&#39;,
        password=&#39;Ur#730xd&#39;,
        save_dir=&#39;./hjx/data/ur_bi_data&#39;,
        logger:logging.Logger=None
        ):
        self.save_dir = save_dir
        self.logger = logger
        super().__init__(
            host=host,
            port=port,
            database=database,
            auth_mechanism=auth_mechanism,
            user=user,
            password=password,
            save_dir=save_dir,
            logger=logger
            )
    def get_sales_goal_amt(self):
        &#39;&#39;&#39;销售目标金额&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;month_of_year_sales_goal_amt.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            sql = &#39;&#39;&#39;
            select sales_goal.shop_no,
                if(sales_goal.serial=&#39;Y&#39;,&#39;W&#39;,sales_goal.serial) as `sales_goal.serial`,
                dates.month_of_year,
                sum(sales_goal.sales_goal_amt) as sales_goal_amt
            from ur_bi_dw.dwd_sales_goal_west as sales_goal
            inner join ur_bi_dw.dim_date as dates
                on sales_goal.date_key = dates.date_key
            group by sales_goal.shop_no,
                if(sales_goal.serial=&#39;Y&#39;,&#39;W&#39;,sales_goal.serial),
                dates.month_of_year
            &#39;&#39;&#39;
            data:pd.DataFrame = self.db_helper.get_data(sql)
            data = data.rename(columns={
                &#39;shop_no&#39;:&#39;sales_goal.shop_no&#39;,
                &#39;serial&#39;:&#39;sales_goal.serial&#39;,
                &#39;month_of_year&#39;:&#39;dates.month_of_year&#39;,
            })
            # 排序
            data = data.sort_values([&#39;sales_goal.shop_no&#39;,&#39;sales_goal.serial&#39;,&#39;dates.month_of_year&#39;])
            data.to_csv(file_path)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_shop_serial_area(self):
        &#39;&#39;&#39;店-系列面积&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;shop_serial_area.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            sql = &#39;&#39;&#39;
            select shop_serial_area.shop_no,
                if(shop_serial_area.serial=&#39;Y&#39;,&#39;W&#39;,shop_serial_area.serial) as `shop_serial_area.serial`,
                shop_serial_area.month_of_year,
                sum(shop_serial_area.area) as `shop_serial_area.area`
            from ur_bi_dw.dwd_shop_serial_area as shop_serial_area
            where shop_serial_area.area is not null
            group by shop_serial_area.shop_no,if(shop_serial_area.serial=&#39;Y&#39;,&#39;W&#39;,shop_serial_area.serial),shop_serial_area.month_of_year
            &#39;&#39;&#39;
            data:pd.DataFrame = self.db_helper.get_data(sql)
            data = data.rename(columns={
                &#39;shop_no&#39;:&#39;shop_serial_area.shop_no&#39;,
                &#39;serial&#39;:&#39;shop_serial_area.serial&#39;,
                &#39;month_of_year&#39;:&#39;shop_serial_area.month_of_year&#39;,
                &#39;area&#39;:&#39;shop_serial_area.area&#39;,
            })
            # 排序
            data = data.sort_values([&#39;shop_serial_area.shop_no&#39;,&#39;shop_serial_area.serial&#39;,&#39;shop_serial_area.month_of_year&#39;])
            data.to_csv(file_path)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
pass
def get_datas(
    host=&#39;10.2.32.22&#39;,
    port=21051,
    database=&#39;ur_ai_dw&#39;,
    auth_mechanism=&#39;LDAP&#39;,
    user=&#39;urbi&#39;,
    password=&#39;Ur#730xd&#39;,
    save_dir=&#39;./data/sales_forecast/ur_bi_dw_data&#39;,
    logger:logging.Logger=None):
    ur_bi_get_datas = CustomUrBiGetDatas(
        host=host,
        port=port,
        database=database,
        auth_mechanism=auth_mechanism,
        user=user,
        password=password,
        save_dir=save_dir,
        logger=logger
    )
    try:
        # 店,系列,品类,年月,销售目标金额
        logger.info(&#39;正在查询年月销售目标金额数据...&#39;)
        ur_bi_get_datas.get_sales_goal_amt()
        logger.info(&#39;查询年月销售目标金额数据完成!&#39;)
    except Exception as ex:
        logger.exception(ex)
        raise ex # 往外抛出异常
    finally:
        ur_bi_get_datas.close()
pass
def getdata_ur_bi_dw(
    host=&#39;10.2.32.22&#39;,
    port=21051,
    database=&#39;ur_ai_dw&#39;,
    auth_mechanism=&#39;LDAP&#39;,
    user=&#39;urbi&#39;,
    password=&#39;Ur#730xd&#39;,
    save_dir=&#39;./data/sales_forecast/ur_bi_dw_data&#39;,
    logger=None
):
    get_common_datas(
        host=host,
        port=port,
        database=database,
        auth_mechanism=auth_mechanism,
        user=user,
        password=password,
        logger=logger
    )
    get_datas(
        host=host,
        port=port,
        database=database,
        auth_mechanism=auth_mechanism,
        user=user,
        password=password,
        save_dir=save_dir,
        logger=logger
    )
pass
# 代码入口
# getdata_ur_bi_dw(
#     host=ur_bi_dw_host,
#     port=ur_bi_dw_port,
#     database=ur_bi_dw_database,
#     auth_mechanism=ur_bi_dw_auth_mechanism,
#     user=ur_bi_dw_user,
#     password=ur_bi_dw_password,
#     save_dir=ur_bi_dw_save_dir,
#     logger=logger
#     )

コードの説明と理解

各クラスの特定の関数の説明。コードは、次のテキストの説明に従って「食べる」必要があります。

(第 1 層) HiveHelper は、データベースへの接続、データベース接続の終了、トランザクションの生成、実行、エンジン、接続などの機能を完了します。

VarsHelper は、保存できる単純な永続化関数を提供します。オブジェクトをファイルに変換し、ディスクに保存します。値の設定、値の取得、および値が存在するかどうかの判断のためのメソッドを提供します。

GlobalShareArgs は辞書を提供し、辞書の取得、辞書の設定、辞書のキーと値のペアの設定、辞書のキーと値のペアの設定を行うためのメソッドを提供します。辞書キーの値、およびキーが辞書内にあるかどうかを判断し、辞書を更新します。その他のメソッド

ShareArgs は GlobalShareArgs と似ていますが、辞書の初期化でより多くのキーと値のペアが含まれる点が異なります

(第2層) UrBiGetDataBaseクラスが提供するスレッドロック辞書、時間辞書、タイムアウト判定辞書はいずれもクラス変数であり、HiveHelperクラスを使用しますが、継承されないので注意してください。具体的なSQL読み込みでは、スレッド固定や時刻判定を提供する

(第3層) UrBiGetDatasクラスで、ハイブデータベースから日付データ、店舗データ、会員データ、天気データ、気象都市データなどを取得します。データ、店舗ライフサイクルデータ、国家製品ライフサイクルデータ、商品開発コードデータ、販売実数データ、流通実数データ、売れ残りデータ、製品原価データ、サイズマッピングデータなど

(第4層) get_common_data関数、URBiGetDataクラスを使用して日付、店舗、天気、気象都市、商品、販売実績データを読み込み、フォルダー ./yongjian/data/ur_bi_data

#にキャッシュします。 ##CustomUrBiGetDataクラスは、UrBiGetDatasBaseクラスを継承し、売上目標金額と点系列エリアデータを読み込みます。

(これも第 4 層です) get_datas 関数は、CustomUrBiGetData クラスを通じて年間および月間の売上目標金額を読み取ります。

一般関数: (これは一般的な呼び出しエントリ関数です) get_data_ur_bi_dw 関数は、get_common_data 関数と get_datas 関数を呼び出してデータを読み取り、データを特定のフォルダー ディレクトリに保存します。

同様に、ハイブ データベースでない場合は、最初の層を mysql に置き換えることができます。ホームページには交換方法が説明されています。 2層目は変更する必要はありません。3層目は読みたいデータテーブルです。データベースが異なれば読みたいデータテーブルも異なるため、ここにSQLを書く必要があります。内部のメソッドを適用するだけです。基本的には変更するだけです。 SQL。

この方法の利点は、データを繰り返し読み取らず、読み取ったデータを効率的に利用できることです。

mysql

import logging
import pandas as pd
from impala.dbapi import connect
import sqlalchemy
from sqlalchemy.orm import sessionmaker
import os
import time
import os
import datetime
from dateutil.relativedelta import relativedelta
from typing import Dict, List
import logging
import threading
import pandas as pd
import pickle
class MySqlHelper(object):
    def __init__(
        self,
        host=&#39;192.168.15.144&#39;,
        port=3306,
        database=&#39;test_ims&#39;,
        user=&#39;spkjz_writer&#39;,
        password=&#39;7cmoP3QDtueVJQj2q4Az&#39;,
        logger:logging.Logger=None
        ):
        self.host = host
        self.port = port
        self.database = database
        self.user = user
        self.password = password
        self.logger = logger
        self.connection_str = &#39;mysql+pymysql://%s:%s@%s:%d/%s&#39; %(
            self.user, self.password, self.host, self.port, self.database
        )
        self.conn = None
        self.cursor = None
        self.engine = None
        self.session = None
    def create_table_code(self, file_name):
        &#39;&#39;&#39;创建表类代码&#39;&#39;&#39;
        os.system(f&#39;sqlacodegen {self.connection_str} > {file_name}&#39;)
        return self.conn
    def get_conn(self):
        &#39;&#39;&#39;创建连接或获取连接&#39;&#39;&#39;
        if self.conn is None:
            engine = self.get_engine()
            self.conn = engine.connect()
        return self.conn
    def get_engine(self):
        &#39;&#39;&#39;创建连接或获取连接&#39;&#39;&#39;
        if self.engine is None:
            self.engine = sqlalchemy.create_engine(self.connection_str)
        return self.engine
    def get_cursor(self):
        &#39;&#39;&#39;创建连接或获取连接&#39;&#39;&#39;
        if self.cursor is None:
            self.cursor = self.conn.cursor()
        return self.cursor
    def get_session(self) -> sessionmaker:
        &#39;&#39;&#39;创建连接或获取连接&#39;&#39;&#39;
        if self.session is None:
            engine = self.get_engine()
            Session = sessionmaker(bind=engine)
            self.session = Session()
        return self.session
    def close_conn(self):
        &#39;&#39;&#39;关闭连接&#39;&#39;&#39;
        if self.conn is not None:
            self.conn.close()
            self.conn = None
        self.dispose_engine()
    def close_session(self):
        &#39;&#39;&#39;关闭连接&#39;&#39;&#39;
        if self.session is not None:
            self.session.close()
            self.session = None
        self.dispose_engine()
    def dispose_engine(self):
        &#39;&#39;&#39;释放engine&#39;&#39;&#39;
        if self.engine is not None:
            # self.engine.dispose(close=False)
            self.engine.dispose()
            self.engine = None
    def close_cursor(self):
        &#39;&#39;&#39;关闭cursor&#39;&#39;&#39;
        if self.cursor is not None:
            self.cursor.close()
            self.cursor = None
    def get_data(self, sql, auto_close=True) -> pd.DataFrame:
        &#39;&#39;&#39;查询数据&#39;&#39;&#39;
        conn = self.get_conn()
        data = None
        try:
            # 异常重试3次
            for i in range(3):
                try:
                    data = pd.read_sql(sql, conn)
                    break
                except Exception as ex:
                    if i == 2:
                        raise ex # 往外抛出异常
                    time.sleep(60) # 一分钟后重试
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            if auto_close:
                self.close_conn()
        return data
pass
class VarsHelper():
    def __init__(self, save_dir, auto_save=True):
        self.save_dir = save_dir
        self.auto_save = auto_save
        self.values = {}
        if not os.path.exists(os.path.dirname(self.save_dir)):
            os.makedirs(os.path.dirname(self.save_dir))
        if os.path.exists(self.save_dir):
            with open(self.save_dir, &#39;rb&#39;) as f:
                self.values = pickle.load(f)
                f.close()
    def set_value(self, key, value):
        self.values[key] = value
        if self.auto_save:
            self.save_file()
    def get_value(self, key):
        return self.values[key]
    def has_key(self, key):
        return key in self.values.keys()
    def save_file(self):
        with open(self.save_dir, &#39;wb&#39;) as f:
            pickle.dump(self.values, f)
            f.close()
pass
class GlobalShareArgs():
    args = {
        "debug": False
    }
    def get_args():
        return GlobalShareArgs.args
    def set_args(args):
        GlobalShareArgs.args = args
    def set_args_value(key, value):
        GlobalShareArgs.args[key] = value
    def get_args_value(key, default_value=None):
        return GlobalShareArgs.args.get(key, default_value)
    def contain_key(key):
        return key in GlobalShareArgs.args.keys()
    def update(args):
        GlobalShareArgs.args.update(args)
pass
class ShareArgs():
    args = {
        "labels_dir":"./hjx/shop_group/month_w_amt/data/labels", # 标签目录
        "labels_output_dir":"./hjx/shop_group/month_w_amt/data/labels_output", # 聚类导出标签目录
        "common_datas_dir":"./hjx/data", # 共用数据目录。ur_bi_dw的公共
        "only_predict": False, # 只识别,不训练
        "delete_model": True, # 先删除模型,仅在训练时使用
        "export_excel": False, # 导出excel
        "classes": 12, # 聚类数
        "batch_size": 16,
        "hidden_size": 32,
        "max_nrof_epochs": 100,
        "learning_rate": 0.0005,
        "loss_type": "categorical_crossentropy",
        "avg_model_num": 10,
        "steps_per_epoch": 4.0, # 4.0
        "lr_callback_patience": 4, 
        "lr_callback_cooldown": 1,
        "early_stopping_callback_patience": 6,
        "get_data": True,
    }
    def get_args():
        return ShareArgs.args
    def set_args(args):
        ShareArgs.args = args
    def set_args_value(key, value):
        ShareArgs.args[key] = value
    def get_args_value(key, default_value=None):
        return ShareArgs.args.get(key, default_value)
    def contain_key(key):
        return key in ShareArgs.args.keys()
    def update(args):
        ShareArgs.args.update(args)
pass
class IMSGetDatasBase():
    # 线程锁列表,同保存路径共用锁
    lock_dict:Dict[str, threading.Lock] = {}
    # 时间列表,用于判断是否超时
    time_dict:Dict[str, datetime.datetime] = {}
    # 用于记录是否需要更新超时时间
    get_data_timeout_dict:Dict[str, bool] = {}
    def __init__(
        self,
        host=&#39;192.168.15.144&#39;,
        port=3306,
        database=&#39;test_ims&#39;,
        user=&#39;spkjz_writer&#39;,
        password=&#39;Ur#7cmoP3QDtueVJQj2q4Az&#39;,
        save_dir=None,
        logger:logging.Logger=None,
        ):
        self.save_dir = save_dir
        self.logger = logger
        self.db_helper = MySqlHelper(
            host=host,
            port=port,
            database=database,
            user=user,
            password=password,
            logger=logger
            )
        # 创建子目录
        if self.save_dir is not None and not os.path.exists(self.save_dir):
            os.makedirs(self.save_dir)
        self.vars_helper = None
        if GlobalShareArgs.get_args_value(&#39;debug&#39;):
            self.vars_helper = VarsHelper(&#39;./hjx/data/vars/IMSGetDatas&#39;) # 把超时时间保存到文件,注释该行即可停掉,只用于调试
    def close(self):
        &#39;&#39;&#39;关闭连接&#39;&#39;&#39;
        self.db_helper.close_conn()
    def get_last_time(self, key_name) -> bool:
        &#39;&#39;&#39;获取是否超时&#39;&#39;&#39;
        # 转静态路径,确保唯一性
        key_name = os.path.abspath(key_name)
        if self.vars_helper is not None and self.vars_helper.has_key(&#39;IMSGetDatasBase.time_list&#39;):
            IMSGetDatasBase.time_dict = self.vars_helper.get_value(&#39;IMSGetDatasBase.time_list&#39;)
        timeout = 12 # 12小时
        if GlobalShareArgs.get_args_value(&#39;debug&#39;):
            timeout = 24 # 24小时
        get_data_timeout = False
        if key_name not in IMSGetDatasBase.time_dict.keys() or (datetime.datetime.today() - IMSGetDatasBase.time_dict[key_name]).total_seconds()>(4*60*60):
            self.logger.info(&#39;超时%d小时,重新查数据:%s&#39;, timeout, key_name)
            # IMSGetDatasBase.time_list[key_name] = datetime.datetime.today()
            get_data_timeout = True
        else:
            self.logger.info(&#39;未超时%d小时,跳过查数据:%s&#39;, timeout, key_name)
        # if self.vars_helper is not None :
        #     self.vars_helper.set_value(&#39;IMSGetDatasBase.time_list&#39;, IMSGetDatasBase.time_list)
        IMSGetDatasBase.get_data_timeout_dict[key_name] = get_data_timeout
        return get_data_timeout
    def save_last_time(self, key_name):
        &#39;&#39;&#39;更新状态超时&#39;&#39;&#39;
        # 转静态路径,确保唯一性
        key_name = os.path.abspath(key_name)
        if IMSGetDatasBase.get_data_timeout_dict[key_name]:
            IMSGetDatasBase.time_dict[key_name] = datetime.datetime.today()
        if self.vars_helper is not None :
            IMSGetDatasBase.time_dict[key_name] = datetime.datetime.today()
            self.vars_helper.set_value(&#39;IMSGetDatasBase.time_list&#39;, IMSGetDatasBase.time_dict)
    def get_lock(self, key_name) -> threading.Lock:
        &#39;&#39;&#39;获取锁&#39;&#39;&#39;
        # 转静态路径,确保唯一性
        key_name = os.path.abspath(key_name)
        if key_name not in IMSGetDatasBase.lock_dict.keys():
            IMSGetDatasBase.lock_dict[key_name] = threading.Lock()
        return IMSGetDatasBase.lock_dict[key_name]
    def get_data_of_date(
        self,
        save_dir,
        sql,
        sort_columns:List[str],
        del_index_list=[-1], # 删除最后下标
        start_date = datetime.datetime(2017, 1, 1), # 开始时间
        offset = relativedelta(months=3), # 时间间隔
        date_format_fun = lambda d: &#39;%04d%02d01&#39; % (d.year, d.month), # 查询语句中替代时间参数的格式化
        filename_format_fun = lambda d: &#39;%04d%02d.csv&#39; % (d.year, d.month), # 查询语句中替代时间参数的格式化
        stop_date = &#39;20700101&#39;, # 超过时间则停止
        ):
        &#39;&#39;&#39;分时间增量读取数据&#39;&#39;&#39;
        # 创建文件夹
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        else:
            #删除最后一个文件
            file_list = os.listdir(save_dir)
            if len(file_list)>0:
                file_list.sort()
                for del_index in del_index_list:
                    os.remove(os.path.join(save_dir,file_list[del_index]))
                    print(&#39;删除最后一个文件:&#39;, file_list[del_index])
        select_index = -1
        # start_date = datetime.datetime(2017, 1, 1)
        while True:
            end_date = start_date + offset
            start_date_str = date_format_fun(start_date)
            end_date_str = date_format_fun(end_date)
            self.logger.info(&#39;date: %s-%s&#39;, start_date_str, end_date_str)
            file_path = os.path.join(save_dir, filename_format_fun(start_date))
            # self.logger.info(&#39;file_path: %s&#39;, file_path)
            if not os.path.exists(file_path):
                data:pd.DataFrame = self.db_helper.get_data(sql % (start_date_str, end_date_str))
                if data is None:
                    break
                self.logger.info(&#39;data: %d&#39;, len(data))
                # self.logger.info(&#39;data: %d&#39;, data.columns)
                if len(data)>0:
                    select_index+=1
                    # 排序
                    data = data.sort_values(sort_columns)
                    data.to_csv(file_path)
                elif select_index!=-1:
                    break
                elif stop_date < start_date_str:
                    raise Exception("读取数据异常,时间超出最大值!")
            start_date = end_date
pass
class CustomIMSGetDatas(IMSGetDatasBase):
    def __init__(
        self,
        host=&#39;192.168.13.134&#39;,
        port=4000,
        database=&#39;test_ims&#39;,
        user=&#39;root&#39;,
        password=&#39;rootimmsadmin&#39;,
        save_dir=&#39;./hjx/data/export_ims_data&#39;,
        logger:logging.Logger=None
        ):
        self.save_dir = save_dir
        self.logger = logger
        super().__init__(
            host=host,
            port=port,
            database=database,
            user=user,
            password=password,
            save_dir=save_dir,
            logger=logger
            )
    def get_ims_w_amt_pro(self):
        &#39;&#39;&#39;年月系列占比数据&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;ims_w_amt_pro.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            # if not self.get_last_time(file_path):
            #     return
            sql = &#39;SELECT * FROM ims_w_amt_pro&#39;
            data:pd.DataFrame = self.db_helper.get_data(sql)
            data = data.rename(columns={
                &#39;serial_forecast_proportion&#39;: &#39;forecast_proportion&#39;,
            })
            data.to_csv(file_path)
            # # 更新超时时间
            # self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
pass
def get_datas(
    host=&#39;192.168.13.134&#39;,
    port=4000,
    database=&#39;test_ims&#39;,
    user=&#39;root&#39;,
    password=&#39;rootimmsadmin&#39;,
    save_dir=&#39;./hjx/data/export_ims_data&#39;,
    logger:logging.Logger=None
    ):
    ur_bi_get_datas = CustomIMSGetDatas(
        host=host,
        port=port,
        database=database,
        user=user,
        password=password,
        save_dir=save_dir,
        logger=logger
    )
    try:
        # 年月系列占比数据
        logger.info(&#39;正在查询年月系列占比数据...&#39;)
        ur_bi_get_datas.get_ims_w_amt_pro()
        logger.info(&#39;查询年月系列占比数据完成!&#39;)
    except Exception as ex:
        logger.exception(ex)
        raise ex # 往外抛出异常
    finally:
        ur_bi_get_datas.close()
pass
def getdata_export_ims(
    host=&#39;192.168.13.134&#39;,
    port=4000,
    database=&#39;test_ims&#39;,
    user=&#39;root&#39;,
    password=&#39;rootimmsadmin&#39;,
    save_dir=&#39;./hjx/data/export_ims_data&#39;,
    logger:logging.Logger=None
    ):
    get_datas(
        host=host,
        port=port,
        database=database,
        user=user,
        password=password,
        save_dir=save_dir,
        logger=logger
    )
pass
に変更されたコード例を添付します。

以上がPython を使用して Hive データベースを読み取るにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は亿速云で複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
numpyを使用してマルチディメンシャルアレイをどのように作成しますか?numpyを使用してマルチディメンシャルアレイをどのように作成しますか?Apr 29, 2025 am 12:27 AM

Numpyを使用して多次元配列を作成すると、次の手順を通じて実現できます。1)numpy.array()関数を使用して、np.array([[1,2,3]、[4,5,6]])などの配列を作成して2D配列を作成します。 2)np.zeros()、np.ones()、np.random.random()およびその他の関数を使用して、特定の値で満たされた配列を作成します。 3)アレイの形状とサイズの特性を理解して、サブアレイの長さが一貫していることを確認し、エラーを回避します。 4)np.reshape()関数を使用して、配列の形状を変更します。 5)コードが明確で効率的であることを確認するために、メモリの使用に注意してください。

Numpyアレイの「ブロードキャスト」の概念を説明します。Numpyアレイの「ブロードキャスト」の概念を説明します。Apr 29, 2025 am 12:23 AM

BroadcastinginNumPyisamethodtoperformoperationsonarraysofdifferentshapesbyautomaticallyaligningthem.Itsimplifiescode,enhancesreadability,andboostsperformance.Here'showitworks:1)Smallerarraysarepaddedwithonestomatchdimensions.2)Compatibledimensionsare

データストレージ用のリスト、array.array、およびnumpy配列を選択する方法を説明します。データストレージ用のリスト、array.array、およびnumpy配列を選択する方法を説明します。Apr 29, 2025 am 12:20 AM

Forpythondatastorage、chooseLists forfficability withmixeddatypes、array.arrayformemory-efficienthogeneousnumericaldata、およびnumpyArrays foradvancednumericalcomputing.listSareversatilebuteficient efficient forlargeNumericaldatates;

Pythonリストを使用することが配列を使用するよりも適切であるシナリオの例を挙げてください。Pythonリストを使用することが配列を使用するよりも適切であるシナリオの例を挙げてください。Apr 29, 2025 am 12:17 AM

pythonlistsarebetterthanarrays formangingdiversedatypes.1)listscanholdelementsofdifferenttypes、2)adearedditionsandremovals、3)theeofferintutiveoperation likeslicing、but4)theearlessememory-effice-hemory-hemory-hemory-hemory-hemory-adlower-dslorededatas。

Pythonアレイ内の要素にどのようにアクセスしますか?Pythonアレイ内の要素にどのようにアクセスしますか?Apr 29, 2025 am 12:11 AM

toaccesselementsinapythonarray、useindexing:my_array [2] Accessesthirderement、Returning3.pythonuseszero basedIndexing.1)usepositiveandnegativeindexing:my_list [0] forteefirstelement、my_list [-1] exterarast.2)

Pythonでタプルの理解が可能ですか?はいの場合、どうしてそうでない場合は?Pythonでタプルの理解が可能ですか?はいの場合、どうしてそうでない場合は?Apr 28, 2025 pm 04:34 PM

記事では、構文のあいまいさのためにPythonにおけるタプル理解の不可能性について説明します。 Tupple式を使用してTuple()を使用するなどの代替は、Tuppleを効率的に作成するためにお勧めします。(159文字)

Pythonのモジュールとパッケージとは何ですか?Pythonのモジュールとパッケージとは何ですか?Apr 28, 2025 pm 04:33 PM

この記事では、Pythonのモジュールとパッケージ、その違い、および使用について説明しています。モジュールは単一のファイルであり、パッケージは__init__.pyファイルを備えたディレクトリであり、関連するモジュールを階層的に整理します。

PythonのDocstringとは何ですか?PythonのDocstringとは何ですか?Apr 28, 2025 pm 04:30 PM

記事では、PythonのDocstrings、それらの使用、および利点について説明します。主な問題:コードのドキュメントとアクセシビリティに関するドキュストリングの重要性。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

VSCode Windows 64 ビットのダウンロード

VSCode Windows 64 ビットのダウンロード

Microsoft によって発売された無料で強力な IDE エディター

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

PhpStorm Mac バージョン

PhpStorm Mac バージョン

最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール