検索
ホームページデータベースmysql チュートリアルKeeping your data work on the server using UNION_MySQL

I have found myself using UNION in MySQL more and more lately. In this example, I am using it to speed up queries that are using IN clauses. MySQL handles the IN clause like a big OR operation. Recently, I created what looks like a very crazy query using UNION, that in fact helped our MySQL servers perform much better.

With any technology you use, you have to ask yourself, "What is this tech good at doing?" For me, MySQL has always been excelent at running lots of small queries that use primary, unique, or well defined covering indexes. I guess most databases are good at that. Perhaps that is the bare minimum for any database. MySQL seems to excel at doing this however. We had a query that looked like this:

select category_id, count(*) from some_table<br>where<br>article_id in (1,2,3,4,5,6,7,8,9) and<br>category_id in (11,22,33,44,55,66,77,88,99) and<br>some_date_time > now() - interval 30 day<br>group by<br>category_id

There were more things in the where clause. I am not including them all in these examples. MySQL does not have a lot it can do with that query. Maybe there is a key on the date field it can use. And if the date field limits the possible rows, a scan of those rows will be quick. That was not the case here. We were asking for a lot of data to be scanned. Depending on how many items were in the in clauses, this query could take as much as 800 milliseconds to return. Our goal at DealNews is to have all pages generate in under 300 milliseconds. So, this one query was 2.5x our total page time.

In case you were wondering what this query is used for, it is used to calculate the counts of items in sub categories on our category navigation pages. On this page it's the box on the left hand side labeled "Category". Those numbers next to each category are what we are asking this query to return to us.

Because I know how my data is stored and structured, I can fix this slow query. I happen to know that there are many fewer rows for each item for article_id than there is for category_id. There is also a key on this table on article_id and some_date_time. That means, for a single article_id, MySQL could find the rows it wants very quickly. Without using a union, the only solution would be to query all this data in a loop in code and get all the results back and reassemble them in code. That is a lot of wasted round trip work for the application however. You see this pattern a fair amount in PHP code. It is one of my pet peeves. I have written before about keeping the data on the server . The same idea applies here. I turned the above query into this:

select category_id, sum(count) as count from <br>(<br>	(<br>		select category_id, count(*) as count from some_table<br>		where<br>			article_id=1 and<br>			category_id in (11,22,33,44,55,66,77,88,99) and<br>			some_date_time > now() - interval 30 day<br>		group by<br>			category_id<br>	)<br>	union all<br>	(<br>		select category_id, count(*) as count from some_table<br>		where<br>			article_id=2 and<br>			category_id in (11,22,33,44,55,66,77,88,99) and<br>			some_date_time > now() - interval 30 day<br>		group by<br>			category_id<br>	)<br>	union all<br>	(<br>		select category_id, count(*) as count from some_table<br>		where<br>			article_id=3 and<br>			category_id in (11,22,33,44,55,66,77,88,99) and<br>			some_date_time > now() - interval 30 day<br>		group by<br>			category_id<br>	)<br>	union all<br>	(<br>		select category_id, count(*) as count from some_table<br>		where<br>			article_id=4 and<br>			category_id in (11,22,33,44,55,66,77,88,99) and<br>			some_date_time > now() - interval 30 day<br>		group by<br>			category_id<br>	)<br>	union all<br>	(<br>		select category_id, count(*) as count from some_table<br>		where<br>			article_id=5 and<br>			category_id in (11,22,33,44,55,66,77,88,99) and<br>			some_date_time > now() - interval 30 day<br>		group by<br>			category_id<br>	)<br>	union all<br>	(<br>		select category_id, count(*) as count from some_table<br>		where<br>			article_id=6 and<br>			category_id in (11,22,33,44,55,66,77,88,99) and<br>			some_date_time > now() - interval 30 day<br>		group by<br>			category_id<br>	)<br>	union all<br>	(<br>		select category_id, count(*) as count from some_table<br>		where<br>			article_id=7 and<br>			category_id in (11,22,33,44,55,66,77,88,99) and<br>			some_date_time > now() - interval 30 day<br>		group by<br>			category_id<br>	)<br>	union all<br>	(<br>		select category_id, count(*) as count from some_table<br>		where<br>			article_id=8 and<br>			category_id in (11,22,33,44,55,66,77,88,99) and<br>			some_date_time > now() - interval 30 day<br>		group by<br>			category_id<br>	)<br>	union all<br>	(<br>		select category_id, count(*) as count from some_table<br>		where<br>			article_id=9 and<br>			category_id in (11,22,33,44,55,66,77,88,99) and<br>			some_date_time > now() - interval 30 day<br>		group by<br>			category_id<br>	)<br>) derived_table<br>group by<br>	category_id
Pretty gnarly looking huh? The run time of that query is 8ms. Yes, MySQL has to perform 9 subqueries and then the outer query. And because it can use good keys for the subqueries, the total execution time for this query is only 8ms. The data comes back from the database ready to use in one trip to the server. The page generation time for those pages went from a mean of 213ms with a standard deviation of 136ms to a mean of 196ms and standard deviation of 81ms. That may not sound like a lot. Take a look at how much less work the MySQL servers are doing now.mysql graph showing decrease in rows read

The arrow in the image is when I rolled the change out. Several other graphs show the change in server performance as well.

The UNION is a great way to keep your data on the server until it's ready to come back to your application. Do you think it can be of use to you in your application?

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
複数の単一列インデックスに対して複合インデックスをいつ使用する必要がありますか?複数の単一列インデックスに対して複合インデックスをいつ使用する必要がありますか?Apr 11, 2025 am 12:06 AM

データベースの最適化では、クエリ要件に従ってインデックス作成戦略を選択する必要があります。1。クエリに複数の列が含まれ、条件の順序が固定されている場合、複合インデックスを使用します。 2。クエリに複数の列が含まれているが、条件の順序が修正されていない場合、複数の単一列インデックスを使用します。複合インデックスは、マルチコラムクエリの最適化に適していますが、単一列インデックスは単一列クエリに適しています。

MySQLでスロークエリを識別して最適化する方法は? (スロークエリログ、Performance_schema)MySQLでスロークエリを識別して最適化する方法は? (スロークエリログ、Performance_schema)Apr 10, 2025 am 09:36 AM

MySQLスロークエリを最適化するには、slowquerylogとperformance_schemaを使用する必要があります。1。LowerQueryLogを有効にし、しきい値を設定して、スロークエリを記録します。 2。performance_schemaを使用してクエリの実行の詳細を分析し、パフォーマンスのボトルネックを見つけて最適化します。

MySQLおよびSQL:開発者にとって不可欠なスキルMySQLおよびSQL:開発者にとって不可欠なスキルApr 10, 2025 am 09:30 AM

MySQLとSQLは、開発者にとって不可欠なスキルです。 1.MYSQLはオープンソースのリレーショナルデータベース管理システムであり、SQLはデータベースの管理と操作に使用される標準言語です。 2.MYSQLは、効率的なデータストレージと検索機能を介して複数のストレージエンジンをサポートし、SQLは簡単なステートメントを通じて複雑なデータ操作を完了します。 3.使用の例には、条件によるフィルタリングやソートなどの基本的なクエリと高度なクエリが含まれます。 4.一般的なエラーには、SQLステートメントをチェックして説明コマンドを使用することで最適化できる構文エラーとパフォーマンスの問題が含まれます。 5.パフォーマンス最適化手法には、インデックスの使用、フルテーブルスキャンの回避、参加操作の最適化、コードの読み取り可能性の向上が含まれます。

MySQL非同期マスタースレーブレプリケーションプロセスを説明してください。MySQL非同期マスタースレーブレプリケーションプロセスを説明してください。Apr 10, 2025 am 09:30 AM

MySQL非同期マスタースレーブレプリケーションにより、BINLOGを介したデータの同期が可能になり、読み取りパフォーマンスと高可用性が向上します。 1)マスターサーバーレコードはBinlogに変更されます。 2)スレーブサーバーは、I/Oスレッドを介してBINLOGを読み取ります。 3)サーバーSQLスレッドは、BINLOGを適用してデータを同期させます。

MySQL:簡単な学習のためのシンプルな概念MySQL:簡単な学習のためのシンプルな概念Apr 10, 2025 am 09:29 AM

MySQLは、オープンソースのリレーショナルデータベース管理システムです。 1)データベースとテーブルの作成:createdatabaseおよびcreateTableコマンドを使用します。 2)基本操作:挿入、更新、削除、選択。 3)高度な操作:参加、サブクエリ、トランザクション処理。 4)デバッグスキル:構文、データ型、およびアクセス許可を確認します。 5)最適化の提案:インデックスを使用し、選択*を避け、トランザクションを使用します。

MySQL:ユーザーフレンドリーなデータベースの紹介MySQL:ユーザーフレンドリーなデータベースの紹介Apr 10, 2025 am 09:27 AM

MySQLのインストールと基本操作には、次のものが含まれます。1。mysqlをダウンロードしてインストールし、ルートユーザーパスワードを設定します。 2。sqlコマンドを使用して、createdatabaseやcreateTableなどのデータベースとテーブルを作成します。 3. CRUD操作を実行し、挿入、選択、更新、コマンドを削除します。 4.パフォーマンスを最適化し、複雑なロジックを実装するためのインデックスとストアドプロシージャを作成します。これらの手順を使用すると、MySQLデータベースをゼロから構築および管理できます。

InnoDBバッファープールはどのように機能し、なぜパフォーマンスに不可欠なのですか?InnoDBバッファープールはどのように機能し、なぜパフォーマンスに不可欠なのですか?Apr 09, 2025 am 12:12 AM

Innodbbufferpoolは、データとインデックスページをメモリにロードすることにより、MySQLデータベースのパフォーマンスを向上させます。 1)データページは、ディスクI/Oを削減するためにBufferPoolにロードされます。 2)汚れたページは、定期的にディスクにマークされ、リフレッシュされます。 3)LRUアルゴリズム管理データページの排除。 4)読み出しメカニズムは、可能なデータページを事前にロードします。

MySQL:初心者向けのデータ管理の容易さMySQL:初心者向けのデータ管理の容易さApr 09, 2025 am 12:07 AM

MySQLは、インストールが簡単で、強力で管理しやすいため、初心者に適しています。 1.さまざまなオペレーティングシステムに適した、単純なインストールと構成。 2。データベースとテーブルの作成、挿入、クエリ、更新、削除などの基本操作をサポートします。 3.参加オペレーションやサブクエリなどの高度な機能を提供します。 4.インデックス、クエリの最適化、テーブルパーティション化により、パフォーマンスを改善できます。 5。データのセキュリティと一貫性を確保するために、バックアップ、リカバリ、セキュリティ対策をサポートします。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

PhpStorm Mac バージョン

PhpStorm Mac バージョン

最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

SublimeText3 英語版

SublimeText3 英語版

推奨: Win バージョン、コードプロンプトをサポート!

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境