Python の sklearn で CountVectorizer を使用するにはどうすればよいですか?
はじめに
CountVectorizer の公式ドキュメント。
ドキュメント コレクションをカウント行列にベクトル化します。
先験的な辞書を提供せず、アナライザーを使用して何らかの特徴選択を行わない場合、特徴の数はデータの分析によって発見された語彙と同じになります。
データの前処理
2 つの方法: 1. 単語を分割せずにモデルに直接入力できます; 2. 最初に中国語のテキストを分割できます。
2 つの方法で生成される語彙は大きく異なります。具体的なデモンストレーションは後ほど説明します。
import jieba import re from sklearn.feature_extraction.text import CountVectorizer #原始数据 text = ['很少在公众场合手机外放', '大部分人都还是很认真去学习的', '他们会用行动来', '无论你现在有多颓废,振作起来', '只需要一点点地改变', '你的外在和内在都能焕然一新'] #提取中文 text = [' '.join(re.findall('[\u4e00-\u9fa5]+',tt,re.S)) for tt in text] #分词 text = [' '.join(jieba.lcut(tt)) for tt in text] text
モデルを構築する
モデルをトレーニングする
#构建模型 vectorizer = CountVectorizer() #训练模型 X = vectorizer.fit_transform(text)
すべての単語:model.get_feature_names()
#所有文档汇集后生成的词汇 feature_names = vectorizer.get_feature_names() print(feature_names)
単語分割なし 生成された語彙
単語分割後に生成された語彙
カウント行列: X.toarray()
#每个文档相对词汇量出现次数形成的矩阵 matrix = X.toarray() print(matrix)
#计数矩阵转化为DataFrame df = pd.DataFrame(matrix, columns=feature_names) df
語彙インデックス: model.vocabulary_
print(vectorizer.vocabulary_)
以上がPython の sklearn で CountVectorizer を使用するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

fiddlereveryversings for the-middleの測定値を使用するときに検出されないようにする方法

Python 3.6のピクルスファイルのロードレポートエラー:modulenotFounderror:nomodulenamed ...

風光明媚なスポットコメント分析におけるJieba Wordセグメンテーションの問題を解決する方法は?風光明媚なスポットコメントと分析を行っているとき、私たちはしばしばJieba Wordセグメンテーションツールを使用してテキストを処理します...


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

WebStorm Mac版
便利なJavaScript開発ツール

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。
