ホームページ >バックエンド開発 >Python チュートリアル >Python の pandas ライブラリを使用してマルチレベル インデックス (MultiIndex) を作成するにはどうすればよいですか?
pd.MultiIndex、複数のレベルを持つインデックス。マルチレベルのインデックスを通じて、インデックス グループ全体のデータを操作できます。この記事では主に、Pandas でマルチレベル インデックスを作成する 6 つの方法を紹介します。
pd.MultiIndex.from_arrays(): 多次元配列はパラメータとして使用され、高次元は高レベルを指定します。インデックス、および低次元は低レベルのインデックスを指定します。
pd.MultiIndex.from_tuples(): 引数としてのタプルのリスト。各タプルは各インデックス (高次元および低次元のインデックス) を指定します。
pd.MultiIndex.from_product(): 複数の反復可能なオブジェクト要素インデックスのデカルト積 (要素のペアの組み合わせ) に基づいて作成される、パラメーターとしての反復可能なオブジェクトのリスト。
pd.MultiIndex.from_frame: 既存のデータ フレームに基づいて直接生成
groupby(): データ グループ化統計を通じて取得
pivot_table(): ピボット テーブルを生成して、
In [1] :
import pandas as pd import numpy as np
は配列を通じて生成され、通常はリスト内の要素を指定します。
In [2]:
# 列表元素是字符串和数字 array1 = [["xiaoming","guanyu","zhangfei"], [22,25,27] ] m1 = pd.MultiIndex.from_arrays(array1) m1
Out[2]:
MultiIndex([('xiaoming', 22), ( 'guanyu', 25), ('zhangfei', 27)], )
[3]:
type(m1) # 查看数据类型
で type 関数を使用してデータ型をチェックし、それが実際であることを確認します。 MultiIndex
Out[3]:
pandas.core.indexes.multi.MultiIndex
が作成されます。同時に、各レベルの名前を指定できます。
In [4]:
# 列表元素全是字符串 array2 = [["xiaoming","guanyu","zhangfei"], ["male","male","female"] ] m2 = pd.MultiIndex.from_arrays( array2, # 指定姓名和性别 names=["name","sex"]) m2
Out[4]:
MultiIndex([('xiaoming', 'male'), ( 'guanyu', 'male'), ('zhangfei', 'female')], names=['name', 'sex'])
次の例では、次のインデックスを生成します。 3 つのレベルと名前の指定:
In [5]:
array3 = [["xiaoming","guanyu","zhangfei"], ["male","male","female"], [22,25,27] ] m3 = pd.MultiIndex.from_arrays( array3, names=["姓名","性别","年龄"]) m3
Out[5]:
MultiIndex([('xiaoming', 'male', 22), ( 'guanyu', 'male', 25), ('zhangfei', 'female', 27)], names=['姓名', '性别', '年龄'])
Throughタプル マルチレベル インデックスを次の形式で生成するには:
In [6]:
# 元组的形式 array4 = (("xiaoming","guanyu","zhangfei"), (22,25,27) ) m4 = pd.MultiIndex.from_arrays(array4) m4
Out[6]:
MultiIndex([('xiaoming', 22), ( 'guanyu', 25), ('zhangfei', 27)], )
In [7]:
# 元组构成的3层索引 array5 = (("xiaoming","guanyu","zhangfei"), ("male","male","female"), (22,25,27)) m5 = pd.MultiIndex.from_arrays(array5) m5
Out [7]:
MultiIndex([('xiaoming', 'male', 22), ( 'guanyu', 'male', 25), ('zhangfei', 'female', 27)], )
最外層はリストです
すべてはタプルです
In [8]:
array6 = [("xiaoming","guanyu","zhangfei"), ("male","male","female"), (18,35,27) ] # 指定名字 m6 = pd.MultiIndex.from_arrays(array6,names=["姓名","性别","年龄"]) m6
Out[8]:
MultiIndex([('xiaoming', 'male', 18), ( 'guanyu', 'male', 35), ('zhangfei', 'female', 27)], names=['姓名', '性别', '年龄'] # 指定名字 )
反復可能なオブジェクトのリストをパラメーターとして使用して、複数の反復可能なオブジェクト要素 (要素のペアの組み合わせ) のデカルト積に基づいてインデックスを作成します。
Python では、isinstance()
関数を使用して、Python オブジェクトが反復可能かどうかを判断します。
# 导入 collections 模块的 Iterable 对比对象 from collections import Iterable
上記の例を通じて、次のことを要約します。共通の文字列、リスト、セット、タプル、および辞書はすべて反復可能なオブジェクトです。
次の例は、説明のために示しています。 18 ]:
names = ["xiaoming","guanyu","zhangfei"] numbers = [22,25] m7 = pd.MultiIndex.from_product( [names, numbers], names=["name","number"]) # 指定名字 m7
アウト[18]:
MultiIndex([('xiaoming', 22), ('xiaoming', 25), ( 'guanyu', 22), ( 'guanyu', 25), ('zhangfei', 22), ('zhangfei', 25)], names=['name', 'number'])
イン[19]:
# 需要展开成列表形式 strings = list("abc") lists = [1,2] m8 = pd.MultiIndex.from_product( [strings, lists], names=["alpha","number"]) m8
アウト[19]:
MultiIndex([('a', 1), ('a', 2), ('b', 1), ('b', 2), ('c', 1), ('c', 2)], names=['alpha', 'number'])
イン[20] :
# 使用元组形式 strings = ("a","b","c") lists = [1,2] m9 = pd.MultiIndex.from_product( [strings, lists], names=["alpha","number"]) m9
アウト[20]:
MultiIndex([('a', 1), ('a', 2), ('b', 1), ('b', 2), ('c', 1), ('c', 2)], names=['alpha', 'number'])
イン[21]:
# 使用range函数 strings = ("a","b","c") # 3个元素 lists = range(3) # 0,1,2 3个元素 m10 = pd.MultiIndex.from_product( [strings, lists], names=["alpha","number"]) m10
アウト[21]:
MultiIndex([('a', 0), ('a', 1), ('a', 2), ('b', 0), ('b', 1), ('b', 2), ('c', 0), ('c', 1), ('c', 2)], names=['alpha', 'number'])
イン[22]:
# 使用range函数 strings = ("a","b","c") list1 = range(3) # 0,1,2 list2 = ["x","y"] m11 = pd.MultiIndex.from_product( [strings, list1, list2], names=["name","l1","l2"] ) m11 # 总个数 3*3*2=18
合計数は「332=18」です:
Out[22]:
MultiIndex([('a', 0, 'x'), ('a', 0, 'y'), ('a', 1, 'x'), ('a', 1, 'y'), ('a', 2, 'x'), ('a', 2, 'y'), ('b', 0, 'x'), ('b', 0, 'y'), ('b', 1, 'x'), ('b', 1, 'y'), ('b', 2, 'x'), ('b', 2, 'y'), ('c', 0, 'x'), ('c', 0, 'y'), ('c', 1, 'x'), ('c', 1, 'y'), ('c', 2, 'x'), ('c', 2, 'y')], names=['name', 'l1', 'l2'])
pd.MultiIndex.from_frame()
df = pd.DataFrame({"name":["xiaoming","guanyu","zhaoyun"], "age":[23,39,34], "sex":["male","male","female"]}) df
マルチレベル インデックスは直接生成され、名前は既存のデータ フレームの列フィールドです:
In [24]:
pd.MultiIndex.from_frame(df)
Out[24]:
MultiIndex([('xiaoming', 23, 'male'), ( 'guanyu', 39, 'male'), ( 'zhaoyun', 34, 'female')], names=['name', 'age', 'sex'])
names パラメータで名前を指定します:
In [25]:
# 可以自定义名字 pd.MultiIndex.from_frame(df,names=["col1","col2","col3"])
Out[ 25]:
MultiIndex([('xiaoming', 23, 'male'), ( 'guanyu', 39, 'male'), ( 'zhaoyun', 34, 'female')], names=['col1', 'col2', 'col3'])
groupby()
In [26]:
df1 = pd.DataFrame({"col1":list("ababbc"), "col2":list("xxyyzz"), "number1":range(90,96), "number2":range(100,106)}) df1
Out[26] :
df2 = df1.groupby(["col1","col2"]).agg({"number1":sum, "number2":np.mean}) df2
データのインデックスを表示します:
In [28] :
df2.index
Out [28]:
MultiIndex([('a', 'x'), ('a', 'y'), ('b', 'x'), ('b', 'y'), ('b', 'z'), ('c', 'z')], names=['col1', 'col2'])
pivot_table()
In [29]:
df3 = df1.pivot_table(values=["col1","col2"],index=["col1","col2"]) df3
イン [30]:
df3.index
アウト[30]:
MultiIndex([('a', 'x'), ('a', 'y'), ('b', 'x'), ('b', 'y'), ('b', 'z'), ('c', 'z')], names=['col1', 'col2'])
以上がPython の pandas ライブラリを使用してマルチレベル インデックス (MultiIndex) を作成するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。