検索
ホームページテクノロジー周辺機器AIautoML テクノロジーで AI をより簡単に開発

autoML テクノロジーで AI をより簡単に開発

Apr 27, 2023 am 11:31 AM
AI機械学習automl

ドイツのフライブルク大学の機械学習研究室長フランク・ヒッター氏は、こうした人間による決断の結果、複雑なモデルは体系的ではなく「直観的に設計」されることになる、と述べた。

借助 autoML 技术更容易地开发AI

#自動機械学習 (autoML) と呼ばれる成長分野は、この推測を排除することを目的としています。そのアイデアは、現在研究者がモデルを設計する際に行わなければならない決定をアルゴリズムに引き継がせることです。最終的には、これらのテクノロジーにより機械学習がよりアクセスしやすくなる可能性があります。

自動機械学習は 10 年近く前から存在していますが、研究者は依然としてその改良に取り組んでいます。本日ボルチモアで開催される新しいカンファレンスでは、autoML の精度を向上させ、パフォーマンスを合理化するための取り組みが紹介されます。

機械学習を簡素化する autoML の可能性に強い関心が寄せられています。 Amazon や Google などの企業は、autoML テクノロジーを活用したローコード機械学習ツールをすでに提供しています。これらの手法がより効果的になれば、研究がスピードアップされ、より多くの人が機械学習を利用できるようになる可能性があります。

そのアイデアは、人々が尋ねたい質問を選択し、それに autoML ツールを向けて、望む結果が得られるようにすることです。

このビジョンは「コンピューター サイエンスの聖杯」であると、ワイオミング大学のコンピューター サイエンス助教授でカンファレンスの主催者であるラース コットホフ氏は述べています。しかし、まず研究者は、これらの技術の時間効率とエネルギー効率を高める方法を見つけ出す必要があります。

#自動機械学習は何を解決できるのでしょうか?

一見すると、autoML の概念は冗長に思えるかもしれません。結局のところ、機械学習はすでにデータから洞察を引き出すプロセスを自動化するものなのです。ただし、autoML アルゴリズムは、基礎となる機械学習モデルよりも上の抽象化レベルで動作し、ガイダンスとしてこれらのモデルの出力のみに依存するため、時間と計算労力を節約します。

研究者は、autoML テクノロジーを事前トレーニングされたモデルに適用して、既存の研究を複製して計算能力を無駄にすることなく、新しい洞察を得ることができます。

たとえば、米国の富士通総研の研究員である Mehdi Bahrami 氏とその共著者らは、さまざまな事前トレーニング済みモデルで BERT ソート アルゴリズムを使用して、さまざまな状況に適応する方法に関する最近の研究を発表しました。新しい目的。

BERT ソートは、データセットでトレーニングするときに、いわゆる「意味的順序」を見つけるアルゴリズムです。たとえば、映画レビュー データが与えられた場合、「素晴らしい」映画が「良い」映画や「悪い」映画よりも上位にランク付けされることがわかります。

autoML テクノロジーの助けを借りて、学習された意味順序を一般化して、がん診断や外国語テキストを分類することもできるため、時間と計算量が削減されます。

「BERT は何か月もの計算が必要で、モデルを生成してプロセスを繰り返すのに 100 万ドルほどかかるなど、非常に高価です。だから、全員が同じことをしたいと思ったら、それは高価です。それはエネルギーではありません」と Bahrami 氏は述べました。

この分野で期待が示されているにもかかわらず、研究者たちは依然として autoML テクノロジーの計算効率を高める方法を模索しています。たとえば、最適なモデルを見つけるために多くの異なるモデルが構築およびテストされる Neural Architecture Search (NAS) のような手法では、これらすべての反復を完了するために必要なエネルギーが膨大になる可能性があります。

自動機械学習は、データを分類するためのランダム決定フォレストやサポート ベクター マシンの作成など、ニューラル ネットワークを含まない機械学習アルゴリズムにも適用できます。これらの分野の研究は進行中であり、autoML テクノロジーをプロジェクトに統合したい人が利用できるコーディング ライブラリがすでに多数存在します。

Hutter 氏は、次のステップは autoML を使用して不確実性を定量化し、アルゴリズムの信頼性と公平性の問題に対処することであると述べました。このビジョンでは、信頼性と公平性の基準は、精度などの他の機械学習の制約と同様になります。 AutoML は、これらのアルゴリズムで見つかったバイアスをリリース前にキャプチャして自動的に修正できます。

ニューラル アーキテクチャの検索における継続的な進歩

しかし、ディープ ラーニングのようなアプリケーションにとって、autoML はまだ長い道のりです。深層学習モデルのトレーニングに使用されるデータ (画像、ドキュメント、録音された音声など) は、多くの場合、高密度で複雑です。処理するには膨大な計算能力が必要です。これらのモデルをトレーニングするためのコストと時間は、潤沢な資金を持つ大企業で働く研究者以外の誰にとっても法外な金額になる可能性があります。

カンファレンスのコンペティションでは、参加者はニューラル アーキテクチャ検索のためのエネルギー効率の高い代替アルゴリズムを開発することが求められます。このテクノロジーは計算要件が厳しいことで有名なので、これは非常に困難です。無数の深層学習モデルを自動的に循環させて、研究者がアプリケーションに適したモデルを選択できるようにしますが、このプロセスには数か月かかり、100万ドル以上の費用がかかる場合があります。

ゼロコスト ニューラル アーキテクチャ検索エージェントとして知られるこれらの代替アルゴリズムの目標は、計算要件を大幅に削減することで、ニューラル アーキテクチャ検索をよりアクセスしやすく、環境に優しいものにすることです。結果の実行には数か月ではなく、数秒かかります。現在、これらの手法はまだ開発の初期段階にあり、信頼性が低いことも多いですが、機械学習の研究者らは、モデル選択プロセスをより効率的にする可能性があると予測しています。


以上がautoML テクノロジーで AI をより簡単に開発の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は51CTO.COMで複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
Gemma Scope:AI'の思考プロセスを覗くためのGoogle'の顕微鏡Gemma Scope:AI'の思考プロセスを覗くためのGoogle'の顕微鏡Apr 17, 2025 am 11:55 AM

ジェマの範囲で言語モデルの内部の仕組みを探る AI言語モデルの複雑さを理解することは、重要な課題です。 包括的なツールキットであるGemma ScopeのGoogleのリリースは、研究者に掘り下げる強力な方法を提供します

ビジネスインテリジェンスアナリストは誰で、どのようになるか?ビジネスインテリジェンスアナリストは誰で、どのようになるか?Apr 17, 2025 am 11:44 AM

ビジネスの成功のロック解除:ビジネスインテリジェンスアナリストになるためのガイド 生データを組織の成長を促進する実用的な洞察に変換することを想像してください。 これはビジネスインテリジェンス(BI)アナリストの力です - GUにおける重要な役割

SQLに列を追加する方法は? - 分析VidhyaSQLに列を追加する方法は? - 分析VidhyaApr 17, 2025 am 11:43 AM

SQLの変更テーブルステートメント:データベースに列を動的に追加する データ管理では、SQLの適応性が重要です。 その場でデータベース構造を調整する必要がありますか? Alter Tableステートメントはあなたの解決策です。このガイドの詳細は、コルを追加します

ビジネスアナリストとデータアナリストビジネスアナリストとデータアナリストApr 17, 2025 am 11:38 AM

導入 2人の専門家が重要なプロジェクトで協力している賑やかなオフィスを想像してください。 ビジネスアナリストは、会社の目標に焦点を当て、改善の分野を特定し、市場動向との戦略的整合を確保しています。 シム

ExcelのCountとCountaとは何ですか? - 分析VidhyaExcelのCountとCountaとは何ですか? - 分析VidhyaApr 17, 2025 am 11:34 AM

Excelデータカウントと分析:カウントとカウントの機能の詳細な説明 特に大規模なデータセットを使用する場合、Excelでは、正確なデータカウントと分析が重要です。 Excelは、これを達成するためにさまざまな機能を提供し、CountおよびCounta関数は、さまざまな条件下でセルの数をカウントするための重要なツールです。両方の機能はセルをカウントするために使用されますが、設計ターゲットは異なるデータ型をターゲットにしています。 CountおよびCounta機能の特定の詳細を掘り下げ、独自の機能と違いを強調し、データ分析に適用する方法を学びましょう。 キーポイントの概要 カウントとcouを理解します

ChromeはAIと一緒にここにいます:毎日何か新しいことを体験してください!!ChromeはAIと一緒にここにいます:毎日何か新しいことを体験してください!!Apr 17, 2025 am 11:29 AM

Google Chrome'sAI Revolution:パーソナライズされた効率的なブラウジングエクスペリエンス 人工知能(AI)は私たちの日常生活を急速に変換しており、Google ChromeはWebブラウジングアリーナで料金をリードしています。 この記事では、興奮を探ります

ai' s Human Side:Wellbeing and the Quadruple bottuntai' s Human Side:Wellbeing and the Quadruple bottuntApr 17, 2025 am 11:28 AM

インパクトの再考:四重材のボトムライン 長い間、会話はAIの影響の狭い見方に支配されており、主に利益の最終ラインに焦点を当てています。ただし、より全体的なアプローチは、BUの相互接続性を認識しています

5ゲームを変える量子コンピューティングの使用ケースあなたが知っておくべきである5ゲームを変える量子コンピューティングの使用ケースあなたが知っておくべきであるApr 17, 2025 am 11:24 AM

物事はその点に向かって着実に動いています。量子サービスプロバイダーとスタートアップに投資する投資は、業界がその重要性を理解していることを示しています。そして、その価値を示すために、現実世界のユースケースの数が増えています

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

PhpStorm Mac バージョン

PhpStorm Mac バージョン

最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

Dreamweaver Mac版

Dreamweaver Mac版

ビジュアル Web 開発ツール

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール