ホームページ >Java >&#&チュートリアル >Java を使用して効率的なフラッシュ セール システムを実装するにはどうすればよいですか?
最初に、最終的なアーキテクチャ図を見てみましょう:
この図に基づいてリクエストのフローについて簡単に説明します。これは、どのように改善しても問題がないためです。
フロントエンド リクエストは Web 層に入り、対応するコードはコントローラーです。
その後、実際の在庫確認、発注などのリクエストがサービス層に送信され、RPC 呼び出しでは引き続き Dubbo が使用されますが、*** バージョンに更新されます。
サービス層はデータを実装し、注文が行われます。
*** システム
フラッシュ セールのシナリオはさておき、通常の注文プロセスは次のステップに単純に分割できます。
在庫の確認
在庫の差し引き
注文の作成
支払い
上記の構造に基づいて、次のようになります。実装については、まず実際のプロジェクトの構造を見てみましょう:
これは以前と同じです:
API を提供しますサービス層の実装と Web 層の利用。
Web 層は単なる Spring MVC です。
サービス層は実際のデータ実装です。
SSM-SECONDS-KILL-ORDER-CONSUMER は、後述する Kafka の消費です。
データベースには、順序をシミュレートするための単純なテーブルが 2 つだけあります:
CREATE TABLE `stock` ( `id` int(11) unsigned NOT NULL AUTO_INCREMENT, `name` varchar(50) NOT NULL DEFAULT '' COMMENT '名称', `count` int(11) NOT NULL COMMENT '库存', `sale` int(11) NOT NULL COMMENT '已售', `version` int(11) NOT NULL COMMENT '乐观锁,版本号', PRIMARY KEY (`id`) ) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=utf8; CREATE TABLE `stock_order` ( `id` int(11) unsigned NOT NULL AUTO_INCREMENT, `sid` int(11) NOT NULL COMMENT '库存ID', `name` varchar(30) NOT NULL DEFAULT '' COMMENT '商品名称', `create_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '创建时间', PRIMARY KEY (`id`) ) ENGINE=InnoDB AUTO_INCREMENT=55 DEFAULT CHARSET=utf8;
Web 層コントローラーの実装:
@Autowired private StockService stockService; @Autowired private OrderService orderService; @RequestMapping("/createWrongOrder/{sid}") @ResponseBody public String createWrongOrder(@PathVariable int sid) { logger.info("sid=[{}]", sid); int id = 0; try { id = orderService.createWrongOrder(sid); } catch (Exception e) { logger.error("Exception",e); } return String.valueOf(id); }
Web はコンシューマーとして呼び出されますOrderService が提供する Dubbo サービスを見てください。
サービス層である OrderService 実装は、最初に API の実装です (出力インターフェイスは API で提供されます):
@Service public class OrderServiceImpl implements OrderService { @Resource(name = "DBOrderService") private com.crossoverJie.seconds.kill.service.OrderService orderService ; @Override public int createWrongOrder(int sid) throws Exception { return orderService.createWrongOrder(sid); } }
ここでは、DBOrderService の実装への単純な呼び出しを示します。DBOrderService は、実際のデータ ランディング、つまりデータベースの書き込み。
DBOrderService 実装:
Transactional(rollbackFor = Exception.class) @Service(value = "DBOrderService") public class OrderServiceImpl implements OrderService { @Resource(name = "DBStockService") private com.crossoverJie.seconds.kill.service.StockService stockService; @Autowired private StockOrderMapper orderMapper; @Override public int createWrongOrder(int sid) throws Exception{ //校验库存 Stock stock = checkStock(sid); //扣库存 saleStock(stock); //创建订单 int id = createOrder(stock); return id; } private Stock checkStock(int sid) { Stock stock = stockService.getStockById(sid); if (stock.getSale().equals(stock.getCount())) { throw new RuntimeException("库存不足"); } return stock; } private int saleStock(Stock stock) { stock.setSale(stock.getSale() + 1); return stockService.updateStockById(stock); } private int createOrder(Stock stock) { StockOrder order = new StockOrder(); order.setSid(stock.getId()); order.setName(stock.getName()); int id = orderMapper.insertSelective(order); return id; } }
事前に初期化された 10 個のインベントリ。 createWrongOrder/1 インターフェイスを手動で呼び出して、次を見つけます:
#在庫テーブル
##注文テーブル#Everything問題はないようで、データは正常です。ただし、同時テストに JMeter を使用する場合: テスト構成は: 同時 300 スレッドです。 2 ラウンドをテストして、データベース内の結果を確認します:##リクエストはすべて正常に応答され、在庫は実際に差し引かれましたが、注文に対して 124 レコードが生成されました。これは明らかに典型的な売られ過ぎ現象です。
実際、ここでインターフェイスを手動で呼び出すと、不十分な在庫が返されますが、もう手遅れです。
#オプティミスティック ロックの更新
上記の現象を回避するにはどうすればよいですか?最も簡単な方法は当然のことながらオプティミスティック ロックです。具体的な実装を見てみましょう:
実際には、他に大きな変更はありません。主にサービス層です:@Override public int createOptimisticOrder(int sid) throws Exception { //校验库存 Stock stock = checkStock(sid); //乐观锁更新库存 saleStockOptimistic(stock); //创建订单 int id = createOrder(stock); return id; } private void saleStockOptimistic(Stock stock) { int count = stockService.updateStockByOptimistic(stock); if (count == 0){ throw new RuntimeException("并发更新库存失败") ; } }対応する XML:
<update> update stock <set> sale = sale + 1, version = version + 1, </set> WHERE id = #{id,jdbcType=INTEGER} AND version = #{version,jdbcType=INTEGER} </update>同じテスト条件で、上記のテストを再度実行します/createOptimisticOrder/1:
今回は、どちらの在庫注文もOKであることがわかりました。
ログを確認して、次の情報を見つけます。多くの同時リクエストがエラーで応答し、結果が得られます。
#スループットの向上フラッシュ セール時のスループットと応答効率をさらに向上させるために、Web とサービスの両方を水平方向に拡張しました。
Web は読み込みに Nginx を使用します。
サービスはマルチアプリケーションでもあります。
再用 JMeter 测试时可以直观的看到效果。
由于我是在阿里云的一台小水管服务器进行测试的,加上配置不高、应用都在同一台,所以并没有完全体现出性能上的优势( Nginx 做负载转发时候也会增加额外的网络消耗)。
Shell 脚本实现简单的 CI
由于应用多台部署之后,手动发版测试的痛苦相信经历过的都有体会。
这次并没有精力去搭建完整的 CICD,只是写了一个简单的脚本实现了自动化部署,希望给这方面没有经验的同学带来一点启发。
构建 Web:
#!/bin/bash # 构建 web 消费者 #read appname appname="consumer" echo "input="$appname PID=$(ps -ef | grep $appname | grep -v grep | awk '{print $2}') # 遍历杀掉 pid for var in ${PID[@]}; do echo "loop pid= $var" kill -9 $var done echo "kill $appname success" cd .. git pull cd SSM-SECONDS-KILL mvn -Dmaven.test.skip=true clean package echo "build war success" cp /home/crossoverJie/SSM/SSM-SECONDS-KILL/SSM-SECONDS-KILL-WEB/target/SSM-SECONDS-KILL-WEB-2.2.0-SNAPSHOT.war /home/crossoverJie/tomcat/tomcat-dubbo-consumer-8083/webapps echo "cp tomcat-dubbo-consumer-8083/webapps ok!" cp /home/crossoverJie/SSM/SSM-SECONDS-KILL/SSM-SECONDS-KILL-WEB/target/SSM-SECONDS-KILL-WEB-2.2.0-SNAPSHOT.war /home/crossoverJie/tomcat/tomcat-dubbo-consumer-7083-slave/webapps echo "cp tomcat-dubbo-consumer-7083-slave/webapps ok!" sh /home/crossoverJie/tomcat/tomcat-dubbo-consumer-8083/bin/startup.sh echo "tomcat-dubbo-consumer-8083/bin/startup.sh success" sh /home/crossoverJie/tomcat/tomcat-dubbo-consumer-7083-slave/bin/startup.sh echo "tomcat-dubbo-consumer-7083-slave/bin/startup.sh success" echo "start $appname success"
构建 Service:
# 构建服务提供者 #read appname appname="provider" echo "input="$appname PID=$(ps -ef | grep $appname | grep -v grep | awk '{print $2}') #if [ $? -eq 0 ]; then # echo "process id:$PID" #else # echo "process $appname not exit" # exit #fi # 遍历杀掉 pid for var in ${PID[@]}; do echo "loop pid= $var" kill -9 $var done echo "kill $appname success" cd .. git pull cd SSM-SECONDS-KILL mvn -Dmaven.test.skip=true clean package echo "build war success" cp /home/crossoverJie/SSM/SSM-SECONDS-KILL/SSM-SECONDS-KILL-SERVICE/target/SSM-SECONDS-KILL-SERVICE-2.2.0-SNAPSHOT.war /home/crossoverJie/tomcat/tomcat-dubbo-provider-8080/webapps echo "cp tomcat-dubbo-provider-8080/webapps ok!" cp /home/crossoverJie/SSM/SSM-SECONDS-KILL/SSM-SECONDS-KILL-SERVICE/target/SSM-SECONDS-KILL-SERVICE-2.2.0-SNAPSHOT.war /home/crossoverJie/tomcat/tomcat-dubbo-provider-7080-slave/webapps echo "cp tomcat-dubbo-provider-7080-slave/webapps ok!" sh /home/crossoverJie/tomcat/tomcat-dubbo-provider-8080/bin/startup.sh echo "tomcat-dubbo-provider-8080/bin/startup.sh success" sh /home/crossoverJie/tomcat/tomcat-dubbo-provider-7080-slave/bin/startup.sh echo "tomcat-dubbo-provider-8080/bin/startup.sh success" echo "start $appname success"
之后每当我有更新,只需要执行这两个脚本就可以帮我自动构建。都是最基础的 Linux 命令,相信大家都看得明白。
乐观锁更新 + 分布式限流
上文的结果看似没有问题,其实还差得远呢。这里只是模拟了 300 个并发没有问题,但是当请求达到了 3000,3W,300W 呢?
虽说可以横向扩展支撑更多的请求,但是能不能利用最少的资源解决问题呢?
仔细分析下会发现:假设我的商品一共只有 10 个库存,那么无论你多少人来买其实最终也最多只有 10 人可以下单成功。所以其中会有 99% 的请求都是无效的。
大家都知道:大多数应用数据库都是压倒骆驼的***一根稻草。通过 Druid 的监控来看看之前请求数据库的情况:
因为 Service 是两个应用:
数据库也有 20 多个连接。怎么样来优化呢?其实很容易想到的就是分布式限流。
我们将并发控制在一个可控的范围之内,然后快速失败这样就能***程度的保护系统。
①distributed-redis-tool ⬆v1.0.3
因为加上该组件之后所有的请求都会经过 Redis,所以对 Redis 资源的使用也是要非常小心。
②API 更新
修改之后的 API 如下:
@Configuration public class RedisLimitConfig { private Logger logger = LoggerFactory.getLogger(RedisLimitConfig.class); @Value("${redis.limit}") private int limit; @Autowired private JedisConnectionFactory jedisConnectionFactory; @Bean public RedisLimit build() { RedisLimit redisLimit = new RedisLimit.Builder(jedisConnectionFactory, RedisToolsConstant.SINGLE) .limit(limit) .build(); return redisLimit; } }
这里构建器改用了 JedisConnectionFactory,所以得配合 Spring 来一起使用。
并在初始化时显示传入 Redis 是以集群方式部署还是单机(强烈建议集群,限流之后对 Redis 还是有一定的压力)。
③限流实现
既然 API 更新了,实现自然也要修改:
/** * limit traffic * @return if true */ public boolean limit() { //get connection Object connection = getConnection(); Object result = limitRequest(connection); if (FAIL_CODE != (Long) result) { return true; } else { return false; } } private Object limitRequest(Object connection) { Object result = null; String key = String.valueOf(System.currentTimeMillis() / 1000); if (connection instanceof Jedis){ result = ((Jedis)connection).eval(script, Collections.singletonList(key), Collections.singletonList(String.valueOf(limit))); ((Jedis) connection).close(); }else { result = ((JedisCluster) connection).eval(script, Collections.singletonList(key), Collections.singletonList(String.valueOf(limit))); try { ((JedisCluster) connection).close(); } catch (IOException e) { logger.error("IOException",e); } } return result; } private Object getConnection() { Object connection ; if (type == RedisToolsConstant.SINGLE){ RedisConnection redisConnection = jedisConnectionFactory.getConnection(); connection = redisConnection.getNativeConnection(); }else { RedisClusterConnection clusterConnection = jedisConnectionFactory.getClusterConnection(); connection = clusterConnection.getNativeConnection() ; } return connection; }
如果是原生的 Spring 应用得采用 @SpringControllerLimit(errorCode=200) 注解。
实际使用如下,Web 端:
/** * 乐观锁更新库存 限流 * @param sid * @return */ @SpringControllerLimit(errorCode = 200) @RequestMapping("/createOptimisticLimitOrder/{sid}") @ResponseBody public String createOptimisticLimitOrder(@PathVariable int sid) { logger.info("sid=[{}]", sid); int id = 0; try { id = orderService.createOptimisticOrder(sid); } catch (Exception e) { logger.error("Exception",e); } return String.valueOf(id); }
Service 端就没什么更新了,依然是采用的乐观锁更新数据库。
再压测看下效果 /createOptimisticLimitOrderByRedis/1:
首先是看结果没有问题,再看数据库连接以及并发请求数都有明显的下降。
乐观锁更新+分布式限流+Redis 缓存
仔细观察 Druid 监控数据发现这个 SQL 被多次查询:
其实这是实时查询库存的 SQL,主要是为了在每次下单之前判断是否还有库存。
这也是个优化点。这种数据我们完全可以放在内存中,效率比在数据库要高很多。
由于我们的应用是分布式的,所以堆内缓存显然不合适,Redis 就非常适合。
这次主要改造的是 Service 层:
每次查询库存时走 Redis。
扣库存时更新 Redis。
需要提前将库存信息写入 Redis。(手动或者程序自动都可以)
主要代码如下:
@Override public int createOptimisticOrderUseRedis(int sid) throws Exception { //检验库存,从 Redis 获取 Stock stock = checkStockByRedis(sid); //乐观锁更新库存 以及更新 Redis saleStockOptimisticByRedis(stock); //创建订单 int id = createOrder(stock); return id ; } private Stock checkStockByRedis(int sid) throws Exception { Integer count = Integer.parseInt(redisTemplate.opsForValue().get(RedisKeysConstant.STOCK_COUNT + sid)); Integer sale = Integer.parseInt(redisTemplate.opsForValue().get(RedisKeysConstant.STOCK_SALE + sid)); if (count.equals(sale)){ throw new RuntimeException("库存不足 Redis currentCount=" + sale); } Integer version = Integer.parseInt(redisTemplate.opsForValue().get(RedisKeysConstant.STOCK_VERSION + sid)); Stock stock = new Stock() ; stock.setId(sid); stock.setCount(count); stock.setSale(sale); stock.setVersion(version); return stock; } /** * 乐观锁更新数据库 还要更新 Redis * @param stock */ private void saleStockOptimisticByRedis(Stock stock) { int count = stockService.updateStockByOptimistic(stock); if (count == 0){ throw new RuntimeException("并发更新库存失败") ; } //自增 redisTemplate.opsForValue().increment(RedisKeysConstant.STOCK_SALE + stock.getId(),1) ; redisTemplate.opsForValue().increment(RedisKeysConstant.STOCK_VERSION + stock.getId(),1) ; }
压测看看实际效果 /createOptimisticLimitOrderByRedis/1:
***发现数据没问题,数据库的请求与并发也都下来了。
乐观锁更新+分布式限流+Redis 缓存+Kafka 异步
***的优化还是想如何来再次提高吞吐量以及性能的。我们上文所有例子其实都是同步请求,完全可以利用同步转异步来提高性能啊。
这里我们将写订单以及更新库存的操作进行异步化,利用 Kafka 来进行解耦和队列的作用。
每当一个请求通过了限流到达了 Service 层通过了库存校验之后就将订单信息发给 Kafka ,这样一个请求就可以直接返回了。
消费程序再对数据进行入库落地。因为异步了,所以最终需要采取回调或者是其他提醒的方式提醒用户购买完成。
这里代码较多就不贴了,消费程序其实就是把之前的 Service 层的逻辑重写了一遍,不过采用的是 Spring Boot。
以上がJava を使用して効率的なフラッシュ セール システムを実装するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。