検索
ホームページデータベースmysql チュートリアルsql中 in , not in , exists , not exists效率分析_MySQL

in和exists执行时,in是先执行子查询中的查询,然后再执行主查询。而exists查询它是先执行主查询,即外层表的查询,然后再执行子查询。

 

exists 和 in 在执行时效率单从执行时间来说差不多,exists要稍微优于in。在使用时一般应该是用exists而不用in

 

如果子查询得出的结果集记录较少,主查询中的表较大且又有索引时应该用in,反之如果外层的主查询记录较少,子查询中的表大,又有索引时使用exists。IN时不对NULL进行处理。

 

not exists 和 not in 比较时,not exists 的效率比较高。

 

为了说明测试结果,我把emp1表中的数据到了315392条。emp2中删除只有2条件数据。测试的依据是执行的时间来说明的。

 

emp1中的数据记录情况。

 

SQL> select count(*) from emp1;

 

  COUNT(*)

 

----------

 

315392

 

emp2中的数据记录情况:

 

SQL> select count(*) from emp2;

 

 

 

  COUNT(*)

 

----------

 

   2

 

1、  执行exists查询,要求在emp1中查询出所有存在于emp2的数据总数

 

 SQL> select count(*) from emp1 where exists ( select null from emp2 where emp1.ename = emp2.ename);

 

  COUNT(*)

 

----------

 

     45056

 

执行次数十次,最大的一次为0.125S

 

2、    使用not exists查询出所在不在emp2中的数据总数

 

SQL> select count(*) from emp1 where not exists ( select null from emp2 where emp1.ename = emp2.ename);

 

     COUNT(*)

 

----------

 

270336

 

执行次数十次,最大的一次为0.141S

 

3、执行in 查询,要求在emp1中查询出所有存在于emp2的数据总数

 

SQL> select count(*) from emp1 where ename in ( select ename from emp2);

 

  COUNT(*)

 

----------

 

     45056

 

执行十次,最大的一次为0.141S

 

4、使用not in查询出所在不在emp2中的数据总数

 

SQL> select count(*) from emp1 where ename not in ( select ename from emp2 );

 

  COUNT(*)

 

----------

 

270336

 

执行十次,最长一次为0.328S

 

5、使用in查询,调用外层与子查询的位置,要求查询出存在于emp2中,且存在于emp1中的数据记录数

 

SQL> select count(*) from emp2 where ename in (select ename from emp1 );

 

  COUNT(*)

 

----------

 

 2

 

执行次数十次,最长的一次为0.047S

 

6、使用exists查询,调用外层与子查询的位置,要求查询出存在于emp2中,且存在于emp1中的数据记录数

 

SQL> select count(*) from emp2 where ename in (select ename from emp1 );

 

  COUNT(*)

 

----------

 

 2

 

执行次数十次,最长的一次为0.047S

 

综上所述:在使用in 和 exists时,个人觉得,效率差不多。而在not in 和 not exists比较时,not exists的效率要比not in的效率要高。

 

当使用in时,子查询where条件不受外层的影响,自动优化会转成exist语句,它的效率和exist一样。(没有验证)

 

如select * from t1 where f1 in (select f1 from t2 where t2.fx='x') 这时,认为in 和 exists效率一样。

 

IN适合于外表大而内表小的情况;EXISTS适合于外表小而内表大的情况。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
MySQLのライセンスは、他のデータベースシステムと比較してどうですか?MySQLのライセンスは、他のデータベースシステムと比較してどうですか?Apr 25, 2025 am 12:26 AM

MySQLはGPLライセンスを使用します。 1)GPLライセンスにより、MySQLの無料使用、変更、分布が可能になりますが、変更された分布はGPLに準拠する必要があります。 2)商業ライセンスは、公的な変更を回避でき、機密性を必要とする商用アプリケーションに適しています。

MyisamよりもInnodbを選びますか?MyisamよりもInnodbを選びますか?Apr 25, 2025 am 12:22 AM

Myisamの代わりにInnoDBを選択する場合の状況には、次のものが含まれます。1)トランザクションサポート、2)高い並行性環境、3)高いデータの一貫性。逆に、Myisamを選択する際の状況には、1)主に操作を読む、2)トランザクションサポートは必要ありません。 INNODBは、eコマースプラットフォームなどの高いデータの一貫性とトランザクション処理を必要とするアプリケーションに適していますが、Myisamはブログシステムなどの読み取り集約型およびトランザクションのないアプリケーションに適しています。

MySQLの外国キーの目的を説明してください。MySQLの外国キーの目的を説明してください。Apr 25, 2025 am 12:17 AM

MySQLでは、外部キーの機能は、テーブル間の関係を確立し、データの一貫性と整合性を確保することです。外部キーは、参照整合性チェックとカスケード操作を通じてデータの有効性を維持します。パフォーマンスの最適化に注意し、それらを使用するときに一般的なエラーを避けてください。

MySQLのインデックスのさまざまなタイプは何ですか?MySQLのインデックスのさまざまなタイプは何ですか?Apr 25, 2025 am 12:12 AM

MySQLには、B-Treeインデックス、ハッシュインデックス、フルテキストインデックス、空間インデックスの4つのメインインデックスタイプがあります。 1.B-Treeインデックスは、範囲クエリ、ソート、グループ化に適しており、従業員テーブルの名前列の作成に適しています。 2。HASHインデックスは、同等のクエリに適しており、メモリストレージエンジンのHASH_TABLEテーブルのID列の作成に適しています。 3。フルテキストインデックスは、記事テーブルのコンテンツ列の作成に適したテキスト検索に使用されます。 4.空間インデックスは、地理空間クエリに使用され、場所テーブルのGEOM列での作成に適しています。

MySQLでインデックスをどのように作成しますか?MySQLでインデックスをどのように作成しますか?Apr 25, 2025 am 12:06 AM

tocreateanindexinmysql、usethecreateindexstatement.1)forasinglecolumn、 "createdexidx_lastnameonemployees(lastname);" 2)foracompositeindexを使用して、 "createindexidx_nameonemployees(lastname、firstname);" 3); "3)、" 3)を使用します

MySQLはSQLiteとどのように違いますか?MySQLはSQLiteとどのように違いますか?Apr 24, 2025 am 12:12 AM

MySQLとSQLiteの主な違いは、設計コンセプトと使用法のシナリオです。1。MySQLは、大規模なアプリケーションとエンタープライズレベルのソリューションに適しており、高性能と高い並行性をサポートしています。 2。SQLiteは、モバイルアプリケーションとデスクトップソフトウェアに適しており、軽量で埋め込みやすいです。

MySQLのインデックスとは何ですか?また、パフォーマンスをどのように改善しますか?MySQLのインデックスとは何ですか?また、パフォーマンスをどのように改善しますか?Apr 24, 2025 am 12:09 AM

MySQLのインデックスは、データの取得をスピードアップするために使用されるデータベーステーブル内の1つ以上の列の順序付けられた構造です。 1)インデックスは、スキャンされたデータの量を減らすことにより、クエリ速度を改善します。 2)B-Tree Indexは、バランスの取れたツリー構造を使用します。これは、範囲クエリとソートに適しています。 3)CreateIndexステートメントを使用して、createIndexidx_customer_idonorders(customer_id)などのインデックスを作成します。 4)Composite Indexesは、createIndexIDX_CUSTOMER_ORDERONORDERS(Customer_Id、Order_date)などのマルチコラムクエリを最適化できます。 5)説明を使用してクエリ計画を分析し、回避します

データの一貫性を確保するために、MySQLでトランザクションを使用する方法を説明します。データの一貫性を確保するために、MySQLでトランザクションを使用する方法を説明します。Apr 24, 2025 am 12:09 AM

MySQLでトランザクションを使用すると、データの一貫性が保証されます。 1)StartTransactionを介してトランザクションを開始し、SQL操作を実行して、コミットまたはロールバックで送信します。 2)SavePointを使用してSave Pointを設定して、部分的なロールバックを許可します。 3)パフォーマンスの最適化の提案には、トランザクション時間の短縮、大規模なクエリの回避、分離レベルの使用が合理的に含まれます。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

WebStorm Mac版

WebStorm Mac版

便利なJavaScript開発ツール

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。