ニューラルネットワークコンピューティングの将来は、私たちが予想していたよりも悪いかもしれません - 電気を使用する固体チップではなく、水に浸されることになります。
最近、ハーバード大学工学応用科学大学院 (SEAS) と新興企業 DNA Script で構成されるチームが、水溶液中のイオンの動きに基づいたプロセッサーの開発に成功しました。
物理学者は、このようなデバイスは脳の情報伝達方法に近いため、脳をヒントにしたコンピューティングの次のステップとなる可能性があると考えています。
「水溶液中のイオン回路は、信号処理のための電荷担体としてイオンを使用する」と研究者らは論文で述べている。 「私たちは水ベースのイオン回路を提案しました...アナログ計算が可能なこの機能的イオン回路は、より複雑な水ベースのイオンへの一歩です
この研究は、材料科学ジャーナルの最新号に掲載されました。」先進的な材料。
論文: https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202205096
スマートフォンからクラウドサーバーまでのチップが固体半導体で作られていることはわかっています 電子を操作する計算タスクを実行することは、生き物の仕組みと同じではありません。
脳内の信号伝達の主な部分は、液体媒体中でのイオンと呼ばれる荷電分子の動きです。脳の驚異的な処理能力を人工的に再現することは困難ですが、科学者たちは、コンピュータでも同様のシステム、つまり水溶液中でイオンを運ぶことができると考えています。
このアプローチは、媒体が変更されたため、従来のシリコンベースのコンピューティングよりも遅くなりますが、いくつかの興味深い利点がある可能性があります。たとえば、イオンはさまざまな分子から生成でき、それぞれが異なる特性を持ち、さまざまな方法で利用できます。
しかし、まず科学者はそれが実際に機能することを証明する必要があります。
ハーバード大学の物理学者、Woo-Bin Jung 率いるチームがこの方向に取り組んでいます。コンピューターを構築する最初のステップは、信号を切り替えたり強化したりするデバイスである機能性イオン トランジスタを設計することです。彼らの最新の進歩には、何百ものトランジスタをイオン回路に結合することが含まれています。
このトランジスタは、中央に小さな円盤状の電極があり、それを囲む 2 つの同心円状のリング状の電極を備えた「ブルズアイ」配置の電極で構成されています。これはキノン分子の水溶液と接触します。使用すると、中央のディスクに電圧が印加され、キノン溶液中に水素イオン電流が発生します。同時に、2 つのリング電極が溶液の pH を調整し、それによってイオン電流を増減させます。
チップ(左)、中央(中央)に数百個のトランジスタのアレイ(右)があります。
キノンは、共役シクロヘキサジエンジオンまたはシクロヘキサジエンジメチレン構造を含む有機化合物の一種であり、この物質に基づくトランジスタは「重みパラメータとディスク電圧の物理的乗算によりイオン電流の答えを生成します」
「生物学的コンピュータ」という概念は、現在のコンピュータで使用されている半導体チップや記憶媒体の代わりに生物学的材料を使用することを指しますが、これはコンピュータの将来のもう一つの主要な方向である量子コンピューティングの範囲外であると考えられています。しかし、これまでの研究の多くは、そのようなデバイスを多数含む回路ではなく、個々のイオン ダイオードやトランジスタに焦点を当てていました。
非常に高い計算能力を必要とする現在のニューラル ネットワークは、複数の乗算を伴う行列乗算演算に大きく依存しています。そこでチームは、それぞれが乗算可能なトランジスタの 16 × 16 アレイを設計し、行列乗算を実行できるイオン回路を作成しました。これらは相補型金属酸化膜半導体 (CMOS) 電子チップの表面に実装され、それによって動作します。
研究者らは、物理演算またはシミュレートされた積和演算 (MAC) 演算を実行することにより、このアレイレベルのイオン回路の実用性を実証しました。物理現象に基づくアナログ MAC 演算 - 多くのデジタル論理ゲートとブール代数に基づくデジタル MAC 演算とは対照的に、新しい方法は人工ニューラル ネットワークの消費電力を削減する方向をもたらします。
イオントランジスタの回路図。
各クロスポイントのコンダクタンスはネットワークのシナプス重みとして機能するため、アレイの行に供給される入力電圧はオームの法則によって重みで乗算され、その結果生じる電流はキルヒホッフの法則に従って各列に蓄積されます。したがって、各列電流は、入力データ ベクトルと列のシナプス重みベクトルの間のドット積として物理的に生成されます。
各イオントランジスタでは、印加電圧 Vin の電流 Iout が Ig によってゲートされ、Iout = W × Vin となる Vin の領域を見つけることができ、比例定数または重み W は Ig によって調整できます。この領域では、イオン トランジスタは重みと入力電圧の間で物理的な乗算を実行します。
乗算と累積の演算。
「行列乗算は、人工知能ニューラルネットワークで最も一般的に使用される計算であり、私たちのイオン回路は、完全な電気化学機械シミュレーションで水中で行列乗算を実行します」と Woo-Bin Jung 氏は述べています。
もちろん、このテクノロジーには現在、操作を同時にではなく順番に実行する必要があるため、メソッドの速度が大幅に低下するなど、重大な制限があります。
しかし、研究チームは、次のステップは速度を上げることではなく、より広範囲の分子をシステムに導入することであると考えています。これまでのところ、研究チームは、水性イオントランジスタのゲート制御とイオン輸送を実現するために、水素イオンやキノンイオンなど、3 つまたは 4 つのイオン種のみを使用しています。この研究では、より複雑なイオン計算を完了し、回路でより複雑な情報を処理できるようにすることを試みています。
研究チームは次のように指摘しました: この研究の最終目標は、イオン技術を使用して電子製品と競合したり置き換えたりすることではなく、ハイブリッド技術を使用して互いの長所を補完することです。
以上がAIコンピューティングの今後の方向性は「ウォーターチップ」か?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ai合并图层的快捷键是“Ctrl+Shift+E”,它的作用是把目前所有处在显示状态的图层合并,在隐藏状态的图层则不作变动。也可以选中要合并的图层,在菜单栏中依次点击“窗口”-“路径查找器”,点击“合并”按钮。

ai橡皮擦擦不掉东西是因为AI是矢量图软件,用橡皮擦不能擦位图的,其解决办法就是用蒙板工具以及钢笔勾好路径再建立蒙板即可实现擦掉东西。

虽然谷歌早在2020年,就在自家的数据中心上部署了当时最强的AI芯片——TPU v4。但直到今年的4月4日,谷歌才首次公布了这台AI超算的技术细节。论文地址:https://arxiv.org/abs/2304.01433相比于TPU v3,TPU v4的性能要高出2.1倍,而在整合4096个芯片之后,超算的性能更是提升了10倍。另外,谷歌还声称,自家芯片要比英伟达A100更快、更节能。与A100对打,速度快1.7倍论文中,谷歌表示,对于规模相当的系统,TPU v4可以提供比英伟达A100强1.

ai可以转成psd格式。转换方法:1、打开Adobe Illustrator软件,依次点击顶部菜单栏的“文件”-“打开”,选择所需的ai文件;2、点击右侧功能面板中的“图层”,点击三杠图标,在弹出的选项中选择“释放到图层(顺序)”;3、依次点击顶部菜单栏的“文件”-“导出”-“导出为”;4、在弹出的“导出”对话框中,将“保存类型”设置为“PSD格式”,点击“导出”即可;

Yann LeCun 这个观点的确有些大胆。 「从现在起 5 年内,没有哪个头脑正常的人会使用自回归模型。」最近,图灵奖得主 Yann LeCun 给一场辩论做了个特别的开场。而他口中的自回归,正是当前爆红的 GPT 家族模型所依赖的学习范式。当然,被 Yann LeCun 指出问题的不只是自回归模型。在他看来,当前整个的机器学习领域都面临巨大挑战。这场辩论的主题为「Do large language models need sensory grounding for meaning and u

ai顶部属性栏不见了的解决办法:1、开启Ai新建画布,进入绘图页面;2、在Ai顶部菜单栏中点击“窗口”;3、在系统弹出的窗口菜单页面中点击“控制”,然后开启“控制”窗口即可显示出属性栏。

引入密集强化学习,用 AI 验证 AI。 自动驾驶汽车 (AV) 技术的快速发展,使得我们正处于交通革命的风口浪尖,其规模是自一个世纪前汽车问世以来从未见过的。自动驾驶技术具有显着提高交通安全性、机动性和可持续性的潜力,因此引起了工业界、政府机构、专业组织和学术机构的共同关注。过去 20 年里,自动驾驶汽车的发展取得了长足的进步,尤其是随着深度学习的出现更是如此。到 2015 年,开始有公司宣布他们将在 2020 之前量产 AV。不过到目前为止,并且没有 level 4 级别的 AV 可以在市场

ai移动不了东西的解决办法:1、打开ai软件,打开空白文档;2、选择矩形工具,在文档中绘制矩形;3、点击选择工具,移动文档中的矩形;4、点击图层按钮,弹出图层面板对话框,解锁图层;5、点击选择工具,移动矩形即可。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

メモ帳++7.3.1
使いやすく無料のコードエディター

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境
