検索
ホームページテクノロジー周辺機器AIOpenAI は新しい一貫性モデルをリリースし、GAN 速度は 18FPS に達し、リアルタイムで高品質の画像を生成できます。

ChatGPT と Midjourney の人気により、その背後にあるテクノロジー拡散モデルが「生成 AI」革命の基盤になりました。

それでも、業界の研究者からの人気は高く、その人気はかつて世界を襲った GAN をはるかに上回っています。

拡散モデルが最も強力だったとき、一部のネチズンが突然大々的に発表しました:

拡散モデルの時代は終わった!一貫性のあるモデルが王の座に就きます。

OpenAI は新しい一貫性モデルをリリースし、GAN 速度は 18FPS に達し、リアルタイムで高品質の画像を生成できます。

一体それは何でしょうか? ? ?

OpenAI が 3 月に大ヒットかつ貴重な論文「Consistency Models」を発表し、本日 GitHub でモデルの重みを公開したことがわかりました。

OpenAI は新しい一貫性モデルをリリースし、GAN 速度は 18FPS に達し、リアルタイムで高品質の画像を生成できます。

紙のアドレス: https://arxiv.org/abs/2303.01469

プロジェクトアドレス: https://github.com/openai/consistency_models

トレーニング速度における「一貫性モデル」拡散モデルに比べて「ワン ステップで生成」 できるため、拡散モデルよりも 1 桁速く単純なタスクを完了でき、使用する計算量は 10 ~ 2000 分の 1 です。

OpenAI は新しい一貫性モデルをリリースし、GAN 速度は 18FPS に達し、リアルタイムで高品質の画像を生成できます。

それでは、どれくらい速いのでしょうか?

一部のネチズンは、これは解像度 256x256 の画像 64 枚を約 3.5 秒で生成するのと同等、つまり 1 秒あたり

18 枚の画像を生成することに相当すると述べています。

OpenAI は新しい一貫性モデルをリリースし、GAN 速度は 18FPS に達し、リアルタイムで高品質の画像を生成できます。

さらに、最新モデルの主な利点の 1 つは、手間をかけずに高品質のサンプルを実現できることです。 「敵対的トレーニング」用。

OpenAI は新しい一貫性モデルをリリースし、GAN 速度は 18FPS に達し、リアルタイムで高品質の画像を生成できます。##この研究

は、チューリングのビッグスリーのヒントンの学生の一人であり、主要な推進者であるイリヤ・サツケヴァーによって実施されました。 AlexNet の 氏と、DALL-E 2 を開発した中国人学者の Mark Chen 氏と Prafulla Dhariwal 氏が執筆したことからも、その研究内容がいかにハードコアであるかが想像できるでしょう。

一部のネチズンは、「一貫性モデル」が将来の研究の方向性であるとさえ言っていますが、将来的には間違いなく拡散モデルを笑いものにするだろうと私は信じています。

#つまり、普及モデルも消滅するということでしょうか? OpenAI は新しい一貫性モデルをリリースし、GAN 速度は 18FPS に達し、リアルタイムで高品質の画像を生成できます。

より速く、より強く、対立する必要はありません

現時点では、この論文はまだ最終版ではなく、研究が継続中です。

2021 年、OpenAI CEO のサム アルトマンは、ムーアの法則をあらゆる分野にどのように適用すべきかについて議論するブログを書きました。

OpenAI は新しい一貫性モデルをリリースし、GAN 速度は 18FPS に達し、リアルタイムで高品質の画像を生成できます。

アルトマン氏は少し前に Twitter で人工知能について公に語り、人工知能は「リープフロッグ」を達成しつつあると述べました。彼は、「宇宙の知性体の数が 18 か月ごとに 2 倍になるという、新しいバージョンのムーアの法則が間もなく登場するかもしれません。」

OpenAI は新しい一貫性モデルをリリースし、GAN 速度は 18FPS に達し、リアルタイムで高品質の画像を生成できます。

他の人にとって、アルトマンの楽観主義は根拠がないように見えるかもしれません。

しかし、OpenAI の主任科学者イリヤ・サツケヴァー率いるチームが実施した最新の研究は、アルトマン氏の主張を強力に裏付けています。

OpenAI は新しい一貫性モデルをリリースし、GAN 速度は 18FPS に達し、リアルタイムで高品質の画像を生成できます。

#普及モデルに基づいたモデルが多いため、2022 年は AIGC 元年と言われています。

普及モデルの人気が徐々に GAN に取って代わり、現在の業界で最も効果的な画像生成モデルになりました。たとえば、DALL.E 2 と Google Imagen は両方とも普及モデルです。

しかし、新たに提案した「一貫性モデル」は、拡散モデルと同等の品質のコンテンツをより短時間で出力できることが実証されました。

これは、この「一貫性モデル」が GAN と同様の単一ステップの生成プロセスを使用しているためです。

対照的に、拡散モデルでは、繰り返しのサンプリング プロセスを使用して、画像内のノイズを徐々に除去します。

この方法は印象的ではありますが、良好な結果を得るには数百から数千のステップを実行する必要があり、運用コストがかかるだけでなく、時間がかかります。

OpenAI は新しい一貫性モデルをリリースし、GAN 速度は 18FPS に達し、リアルタイムで高品質の画像を生成できます。

#拡散モデルの継続的反復生成プロセスでは、「一貫性モデル」の計算よりも 10 ~ 2000 回多くの計算が必要になります。トレーニング中の推論も遅くなります。

「一貫性モデル」の力は、必要に応じてサンプルの品質とコンピューティング リソースの間でトレードオフを行う機能にあります。

さらに、このモデルは、画像のパッチング、色付け、ストローク ガイド付き画像編集などのゼロショット データ編集タスクを実行できます。

OpenAI は新しい一貫性モデルをリリースし、GAN 速度は 18FPS に達し、リアルタイムで高品質の画像を生成できます。

# LSUN Bedroom 256^256 ## で蒸留によってトレーニングされたコンセンサス モデルを使用したゼロショット画像編集

#「一貫性モデル」は、数式を使用するときにデータをノイズに変換し、結果として得られる出力が類似のデータ ポイントに対して一貫していることを保証し、それによってスムーズな移行を可能にします。

このタイプの方程式は、「確率フロー常微分方程式」(確率フロー ODE) と呼ばれます。

この研究では、このようなモデルが入力データと出力データの間で自己一貫性を維持しているため、このようなモデルを「一貫性」と名付けました。

これらのモデルは、蒸留モードまたは分離モードのいずれかでトレーニングできます。

蒸留モードでは、モデルは事前トレーニングされた拡散モデルからデータを抽出でき、単一ステップで実行できます。

分離モードでは、モデルは拡散モデルにまったく依存せず、完全に独立したモデルになります。

OpenAI は新しい一貫性モデルをリリースし、GAN 速度は 18FPS に達し、リアルタイムで高品質の画像を生成できます。

両方のトレーニング方法で「敵対的トレーニング」が削除されていることは注目に値します。

敵対的トレーニングによって確かにより強力なニューラル ネットワークが生成されることは認めざるを得ませんが、そのプロセスはより回りくどいものになります。つまり、誤って分類された敵対的サンプルのセットを導入し、ターゲットのニューラル ネットワークを正しいラベルで再トレーニングします。

したがって、敵対的トレーニングは深層学習モデルの予測精度のわずかな低下にもつながり、ロボット アプリケーションに予期しない副作用をもたらす可能性もあります。

実験結果は、「一貫性モデル」のトレーニングに使用される蒸留技術が、拡散モデルに使用される技術よりも優れていることを示しています。

「整合性モデル」は、CIFAR10 イメージ セットと ImageNet 64x64 データ セットで、それぞれ 3.55 と 6.20 という最新の最先端 FID スコアを達成しました。

OpenAI は新しい一貫性モデルをリリースし、GAN 速度は 18FPS に達し、リアルタイムで高品質の画像を生成できます。

OpenAI は新しい一貫性モデルをリリースし、GAN 速度は 18FPS に達し、リアルタイムで高品質の画像を生成できます。

#これをシンプルに実現した普及モデルのクオリティGAN はスピードも二重に完璧です。

Sutskever 氏は 2 月、次のことを示唆するツイートを投稿しました。

多くの人は、AI の大きな進歩には新しい「アイデア」が含まれているに違いないと信じています。しかし、そうではありません。AI の最大の進歩の多くは、よく知られた素朴なアイデアの形で実現されており、うまく行えば信じられないほどの成果が得られます。

OpenAI は新しい一貫性モデルをリリースし、GAN 速度は 18FPS に達し、リアルタイムで高品質の画像を生成できます。

最新の研究はまさにそれを証明しており、古い概念を微調整することですべてを変えることができます。 #著者紹介

OpenAI の共同創設者兼主任科学者として、

Ilya Sutskever 詳細は説明する必要はありませんが、この「トップパフォーマー」の集合写真を見てください。

OpenAI は新しい一貫性モデルをリリースし、GAN 速度は 18FPS に達し、リアルタイムで高品質の画像を生成できます。

(写真の右端)

Yang Song (Song Yang)

OpenAI は新しい一貫性モデルをリリースし、GAN 速度は 18FPS に達し、リアルタイムで高品質の画像を生成できます。 論文の筆頭著者である Song Yang は、OpenAI の研究員です。

以前、清華大学で数学と物理学の学士号を取得し、スタンフォード大学でコンピュータ サイエンスの修士号と博士号を取得しました。さらに、Google Brain、Uber ATG、Microsoft Research でインターンを経験しました。

機械学習の研究者として、彼は複雑な高次元データをモデル化、分析、生成するためのスケーラブルな手法の開発に重点を置いています。彼の興味は、生成モデリング、表現学習、確率論的推論、人工知能のセキュリティ、科学用 AI など、複数の分野に及びます。

Mark Chen

OpenAI は新しい一貫性モデルをリリースし、GAN 速度は 18FPS に達し、リアルタイムで高品質の画像を生成できます。

Mark Chen は、OpenAI のマルチモーダルかつ最先端の研究部門の責任者です。彼は米国コンピュータオリンピックチームのコーチでもあります。

以前、彼は MIT で数学とコンピューター サイエンスの学士号を取得し、ジェーン ストリート キャピタルを含むいくつかの私設取引会社でクオンツ トレーダーとして働いていました。

OpenAI に入社後、チームを率いて DALL-E 2 を開発し、GPT-4 にビジョンを導入しました。さらに、Codex の開発を主導し、GPT-3 プロジェクトに参加し、Image GPT を作成しました。

#Prafulla Dhariwal

OpenAI は新しい一貫性モデルをリリースし、GAN 速度は 18FPS に達し、リアルタイムで高品質の画像を生成できます。

##Prafulla Dhariwal は OpenAI の研究員で、生成モデルと自律型教師ありモデルに取り組んでいます。学ぶ。それ以前は、MIT の学部生としてコンピューティング、数学、物理学を勉強していました。

興味深いことに、拡散モデルは画像生成の分野で GAN に勝つことができます。これは、2021 年の NeurIPS 論文で彼が提案したものです。

OpenAI は新しい一貫性モデルをリリースし、GAN 速度は 18FPS に達し、リアルタイムで高品質の画像を生成できます。

ネチズン: ついに Open AI に戻ってきました

OpenAI は一貫性のあるソース コードを公開しました今日のモデル。

OpenAI は新しい一貫性モデルをリリースし、GAN 速度は 18FPS に達し、リアルタイムで高品質の画像を生成できます。

最後に Open AI の話に戻ります。

OpenAI は新しい一貫性モデルをリリースし、GAN 速度は 18FPS に達し、リアルタイムで高品質の画像を生成できます。

毎日、非常に多くのクレイジーな画期的な進歩や発表に直面しています。ネチズンは「休憩したほうがいいですか、それともスピードを上げるべきですか?」と尋ねました。

OpenAI は新しい一貫性モデルをリリースし、GAN 速度は 18FPS に達し、リアルタイムで高品質の画像を生成できます。

#これにより、研究者は拡散モデルと比較してモデルのトレーニングにかかる​​コストを大幅に節約できます。

OpenAI は新しい一貫性モデルをリリースし、GAN 速度は 18FPS に達し、リアルタイムで高品質の画像を生成できます。

一部のネチズンは、リアルタイム編集、NeRF レンダリング、リアルなど、「一貫性モデル」の将来の使用例も挙げています。 -時間ゲームのレンダリング。

現時点ではデモはありませんが、画像生成の速度が大幅に向上し、常に優れていることを確認する価値があります。

ダイヤルアップからブロードバンドに直接アップグレードしました。

OpenAI は新しい一貫性モデルをリリースし、GAN 速度は 18FPS に達し、リアルタイムで高品質の画像を生成できます。

ブレイン コンピューター インターフェイスと、ほぼリアルタイムで生成される超リアルな画像。

OpenAI は新しい一貫性モデルをリリースし、GAN 速度は 18FPS に達し、リアルタイムで高品質の画像を生成できます。

以上がOpenAI は新しい一貫性モデルをリリースし、GAN 速度は 18FPS に達し、リアルタイムで高品質の画像を生成できます。の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は51CTO.COMで複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
ai合并图层的快捷键是什么ai合并图层的快捷键是什么Jan 07, 2021 am 10:59 AM

ai合并图层的快捷键是“Ctrl+Shift+E”,它的作用是把目前所有处在显示状态的图层合并,在隐藏状态的图层则不作变动。也可以选中要合并的图层,在菜单栏中依次点击“窗口”-“路径查找器”,点击“合并”按钮。

ai橡皮擦擦不掉东西怎么办ai橡皮擦擦不掉东西怎么办Jan 13, 2021 am 10:23 AM

ai橡皮擦擦不掉东西是因为AI是矢量图软件,用橡皮擦不能擦位图的,其解决办法就是用蒙板工具以及钢笔勾好路径再建立蒙板即可实现擦掉东西。

谷歌超强AI超算碾压英伟达A100!TPU v4性能提升10倍,细节首次公开谷歌超强AI超算碾压英伟达A100!TPU v4性能提升10倍,细节首次公开Apr 07, 2023 pm 02:54 PM

虽然谷歌早在2020年,就在自家的数据中心上部署了当时最强的AI芯片——TPU v4。但直到今年的4月4日,谷歌才首次公布了这台AI超算的技术细节。论文地址:https://arxiv.org/abs/2304.01433相比于TPU v3,TPU v4的性能要高出2.1倍,而在整合4096个芯片之后,超算的性能更是提升了10倍。另外,谷歌还声称,自家芯片要比英伟达A100更快、更节能。与A100对打,速度快1.7倍论文中,谷歌表示,对于规模相当的系统,TPU v4可以提供比英伟达A100强1.

ai可以转成psd格式吗ai可以转成psd格式吗Feb 22, 2023 pm 05:56 PM

ai可以转成psd格式。转换方法:1、打开Adobe Illustrator软件,依次点击顶部菜单栏的“文件”-“打开”,选择所需的ai文件;2、点击右侧功能面板中的“图层”,点击三杠图标,在弹出的选项中选择“释放到图层(顺序)”;3、依次点击顶部菜单栏的“文件”-“导出”-“导出为”;4、在弹出的“导出”对话框中,将“保存类型”设置为“PSD格式”,点击“导出”即可;

GPT-4的研究路径没有前途?Yann LeCun给自回归判了死刑GPT-4的研究路径没有前途?Yann LeCun给自回归判了死刑Apr 04, 2023 am 11:55 AM

Yann LeCun 这个观点的确有些大胆。 「从现在起 5 年内,没有哪个头脑正常的人会使用自回归模型。」最近,图灵奖得主 Yann LeCun 给一场辩论做了个特别的开场。而他口中的自回归,正是当前爆红的 GPT 家族模型所依赖的学习范式。当然,被 Yann LeCun 指出问题的不只是自回归模型。在他看来,当前整个的机器学习领域都面临巨大挑战。这场辩论的主题为「Do large language models need sensory grounding for meaning and u

ai顶部属性栏不见了怎么办ai顶部属性栏不见了怎么办Feb 22, 2023 pm 05:27 PM

ai顶部属性栏不见了的解决办法:1、开启Ai新建画布,进入绘图页面;2、在Ai顶部菜单栏中点击“窗口”;3、在系统弹出的窗口菜单页面中点击“控制”,然后开启“控制”窗口即可显示出属性栏。

ai移动不了东西了怎么办ai移动不了东西了怎么办Mar 07, 2023 am 10:03 AM

ai移动不了东西的解决办法:1、打开ai软件,打开空白文档;2、选择矩形工具,在文档中绘制矩形;3、点击选择工具,移动文档中的矩形;4、点击图层按钮,弹出图层面板对话框,解锁图层;5、点击选择工具,移动矩形即可。

强化学习再登Nature封面,自动驾驶安全验证新范式大幅减少测试里程强化学习再登Nature封面,自动驾驶安全验证新范式大幅减少测试里程Mar 31, 2023 pm 10:38 PM

引入密集强化学习,用 AI 验证 AI。 自动驾驶汽车 (AV) 技术的快速发展,使得我们正处于交通革命的风口浪尖,其规模是自一个世纪前汽车问世以来从未见过的。自动驾驶技术具有显着提高交通安全性、机动性和可持续性的潜力,因此引起了工业界、政府机构、专业组织和学术机构的共同关注。过去 20 年里,自动驾驶汽车的发展取得了长足的进步,尤其是随着深度学习的出现更是如此。到 2015 年,开始有公司宣布他们将在 2020 之前量产 AV。不过到目前为止,并且没有 level 4 级别的 AV 可以在市场

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

WebStorm Mac版

WebStorm Mac版

便利なJavaScript開発ツール

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境