翻訳者|Zhu Xianzhong
査読者|Sun Shujuan
古典的な機械学習では、ランダム フォレスト アルゴリズムは「特効薬」タイプのアルゴリズム モデルと言えます。
このモデルは、いくつかの理由で優れています。
- 他の多くのアルゴリズムよりも必要なデータ前処理が少なく、このアルゴリズムのセットアップが簡単になります。簡単です。
- 次のように使用できます。分類または回帰モデル
- 過学習が容易ではない
- 特徴の重要性を簡単に計算できる
この記事では、さまざまなコンポーネントをより詳しく分析したいと考えていますランダム フォレスト アルゴリズムを構成します。これを達成するために、ランダム フォレスト アルゴリズムを最も基本的なコンポーネントに分解し、各コンポーネントの計算タスクについて説明します。この記事を最後まで読むと、ランダム フォレスト アルゴリズムがどのように機能するのか、そしてそれらをより直感的な方法で使用する方法をより深く理解できるようになります。この記事で使用する例は分類関数に焦点を当てていますが、原則の多くは回帰シナリオにも同様に適用できることに注意してください。
ランダム フォレスト アルゴリズムの実行
まずは、従来のランダム フォレスト モードを呼び出しましょう。これは最高レベルであり、Python でランダム フォレストをトレーニングするときに多くの人が使用します。
シミュレートされたデータ
ランダム フォレスト アルゴリズムを実行してターゲット列を予測したい場合は、次のようにするだけです。 :
from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(df.drop('target', axis=1), df['target'], test_size=0.2, random_state=0) # 训练随机森林算法并计算得分 simple_rf_model = RandomForestClassifier(n_estimators=100, random_state=0) simple_rf_model.fit(X_train, y_train) print(f"accuracy: {simple_rf_model.score(X_test, y_test)}") # accuracy: 0.93
ランダム フォレスト分類器の実行は非常に簡単です。上記のコードに示されているように、n_estimators パラメーターを定義し、パラメーターrandom_state を 0 に設定しました。個人的な経験から言えますが、多くの人は 0.93 の精度を見つめてリラックスできません。彼らはとても満足したようで、すんなりと熱狂的な展開作業を始めました。しかし、今日はそんなことはしません。
まず、次の「無害な」コード行をもう一度見てみましょう:
simple_rf_model = RandomForestClassifier(n_estimators=100, random_state=0)
ランダム状態は、他の人が作業を確実に複製できるようにする、ほとんどのデータ サイエンス モデルの機能です。したがって、random_state パラメータについてはあまり心配する必要はありません。
しかし、n_estimators パラメーターを詳しく見てみましょう。 scikit-learn の関連ドキュメントを見ると、次の簡潔な定義が見つかります:
「森の木の数。」
木の数の調査
さて、ランダムフォレストをより具体的に定義しましょう。ランダム フォレストは、多くのデシジョン ツリーのコンセンサス コンテンツであるアンサンブル モデルです。この定義は不完全かもしれませんが、後でもう一度説明します。
多くの木が互いに通信し、合意に達している
これを次のように分解すると、次のように考えられるかもしれません。
#创建决策树 tree1 = DecisionTreeClassifier().fit(X_train, y_train) tree2 = DecisionTreeClassifier().fit(X_train, y_train) tree3 = DecisionTreeClassifier().fit(X_train, y_train) # 预测X_test上的每一棵决策树 predictions_1 = tree1.predict(X_test) predictions_2 = tree2.predict(X_test) predictions_3 = tree3.predict(X_test) print(predictions_1, predictions_2, predictions_3) # 采取优先级策略 final_prediction = np.array([np.round((predictions_1[i] + predictions_2[i] + predictions_3[i])/3) for i in range(len(predictions_1))]) print(final_prediction)
上の例では、X_train で 3 つのデシジョン ツリーをトレーニングしました。これは、n_estimators=3 を意味します。 3 つのツリーをトレーニングした後、同じテスト セットで各ツリーを予測し、最終的に 3 つのツリーのうち 2 つが選択される予測になりました。
それは理にかなっていますが、完全に正しいわけではないようです。すべてのデシジョン ツリーが同じデータでトレーニングされた場合、それらはすべて同じ結論に達し、全体的な利点が無効になるのではありませんか?
置換サンプリングの詳細な説明
前の定義に基づいて次の文を追加しましょう:「ランダム フォレストはアンサンブル モデルであり、無関係な多くのデシジョン ツリーのコンセンサスです。」
デシジョン ツリーは 2 つの方法で無相関になる可能性があります:
1. データの一意の部分を各デシジョン ツリーにサンプリングするのに十分な大きさのデータセット サイズがある。このアプローチは通常、大量のデータを必要とするため、一般的ではありません。
2. 置換によるサンプリングと呼ばれる手法を使用できます。置換抽出とは、次のサンプルが抽出される前に、母集団から抽出されたサンプルがサンプル母集団に戻されることです。
置換によるサンプリングについて説明するために、3 色のビー玉が 5 個あるとします。全体的な外観は次のとおりです。
blue, blue, red, green, red
いくつかのビー玉をサンプリングしたい場合、通常はいくつかを抜き取ります。
blue, red
これは、一度赤を拾った後、元のビー玉の山に戻さなかったためです。
しかし、置き換えを使用してサンプリングすると、実際にはどのビー玉でも 2 回拾うことができます。赤は私の山に戻ってきたので、まだもう一度手に入れるチャンスがあります。
red, red
ランダム フォレスト アルゴリズムでは、デフォルト値は、元のサンプル母集団サイズの約 2/3 のサンプルを構築することです。元のトレーニング データが 1000 行である場合、ツリーにフィードするトレーニング データ サンプルはおそらく約 670 行になります。そうは言っても、ランダム フォレストを構築するときに、さまざまなサンプリング レートを試すには良いパラメータになります。
前のコードとは異なり、次のコードはランダム フォレストに近く、パラメーター n_estimators=3 です。
import numpy as np import pandas as pd from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split # 对于每一棵树从X_train中采用3次放回抽样 df_sample1 = df.sample(frac=.67, replace=True) df_sample2 = df.sample(frac=.67, replace=True) df_sample3 = df.sample(frac=.67, replace=True) X_train_sample1, X_test_sample1, y_train_sample1, y_test_sample1 = train_test_split(df_sample1.drop('target', axis=1), df_sample1['target'], test_size=0.2) X_train_sample2, X_test_sample2, y_train_sample2, y_test_sample2 = train_test_split(df_sample2.drop('target', axis=1), df_sample2['target'], test_size=0.2) X_train_sample3, X_test_sample3, y_train_sample3, y_test_sample3 = train_test_split(df_sample3.drop('target', axis=1), df_sample3['target'], test_size=0.2) #生成决策树 tree1 = DecisionTreeClassifier().fit(X_train_sample1, y_train_sample1) tree2 = DecisionTreeClassifier().fit(X_train_sample2, y_train_sample2) tree3 = DecisionTreeClassifier().fit(X_train_sample3, y_train_sample3) # 在X_test上预测每一棵决策树 predictions_1 = tree1.predict(X_test) predictions_2 = tree2.predict(X_test) predictions_3 = tree3.predict(X_test) df = pd.DataFrame([predictions_1, predictions_2, predictions_3]).T df.columns = ["tree1", "tree2", "tree3"] # 采取优先级策略 final_prediction = np.array([np.round((predictions_1[i] + predictions_2[i] + predictions_3[i])/3) for i in range(len(predictions_1))]) preds = pd.DataFrame([predictions_1, predictions_2, predictions_3, final_prediction, y_test]).T.head(20) preds.columns = ["tree1", "tree2", "tree3", "final", "label"] preds
我们用放回抽样,把这些样本输送给树,产生结果,并达成共识。
袋装分类器(Bagging Classifier)
早期的架构实际上就是一个装袋分类器
我们现在将引入一种新的算法,一种称为自助聚集(Bootstrap Aggregation,也称为“Bagging”)的有监督的学习算法。但请放心,这又会与随机森林算法联系起来。我们引入这个新概念的原因是,正如我们将要在文章后面的图中看到的,我们到目前为止所做的一切实际上都是装袋分类器所做的!
在下面的代码中,装袋分类器使用了一个名为bootstrap的参数,它实际上执行了我们刚才手动执行的放回抽样步骤。其实,sklearn库的随机森林算法实现也存在相同的参数。如果bootstrap参数的值是false,那么我们将为每个分类器使用整个总体。
import numpy as np from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import BaggingClassifier # 集合中所使用的树的数量 n_estimators = 3 # 初始化装袋分类器 bag_clf = BaggingClassifier( DecisionTreeClassifier(), n_estimators=n_estimators, bootstrap=True) # 根据训练数据拟合装袋分类器 bag_clf.fit(X_train, y_train) # 对测试数据进行预测 y_pred = bag_clf.predict(X_test) pd.DataFrame([y_pred, y_test]).T
装袋分类器BaggingClassifier非常棒,因为您可以将它们与未命名为决策树的评估器一起使用!您可以插入许多算法,Bagging算法会将其转化为集成解决方案。随机森林算法实际上扩展了装袋算法(如果bootstrapping = true),因为它部分地利用Bagging算法来形成不相关的决策树。
然而,即使bootstrapping=false,随机森林算法也需要额外一步来确保树之间的不相关性——特征采样。
特征采样详解
特征采样(Feature sampling)意味着不仅对行进行采样,还对列进行采样。与行不同,随机森林的列在没有放回的情况下被采样,这意味着我们不会有重复的列来训练1棵树。
有许多方法可以对特征进行采样。您可以指定要采样的固定最大特征数量,获取特征总数的平方根,或者尝试使用日志数据。这些方法中的每一种都有各自的利弊,并将取决于您的数据和具体使用场景。
通过特征采样扩展了Bagging算法
下面的代码片段使用sqrt技术对列进行采样,对行进行采样,训练3个决策树,并使用优先级规则进行预测。我们首先使用放回进行采样,他们对列进行采样,训练我们的单个树,让我们的树根据测试数据进行预测,然后采用优先级规则实现共识。
import numpy as np import pandas as pd import math from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split #对于每一棵树从X_train中取3个样本 df_sample1 = df.sample(frac=.67, replace=True) df_sample2 = df.sample(frac=.67, replace=True) df_sample3 = df.sample(frac=.67, replace=True) # 分割训练集 X_train_sample1, y_train_sample1 = df_sample1.drop('target', axis=1), df_sample1['target'] X_train_sample2, y_train_sample2 = df_sample2.drop('target', axis=1), df_sample2['target'] X_train_sample3, y_train_sample3 = df_sample3.drop('target', axis=1), df_sample3['target'] # 使用sqrt获取训练和测试的采样特征,现在注意replace如何等于False的 num_features = len(X_train.columns) X_train_sample1 = X_train_sample1.sample(n=int(math.sqrt(num_features)), replace=False, axis = 1) X_train_sample2 = X_train_sample2.sample(n=int(math.sqrt(num_features)), replace=False, axis = 1) X_train_sample3 = X_train_sample3.sample(n=int(math.sqrt(num_features)), replace=False, axis = 1) # 创建决策树,这次我们对列进行采样 tree1 = DecisionTreeClassifier().fit(X_train_sample1, y_train_sample1) tree2 = DecisionTreeClassifier().fit(X_train_sample2, y_train_sample2) tree3 = DecisionTreeClassifier().fit(X_train_sample3, y_train_sample3) # 预测X_test上的每个决策树 predictions_1 = tree1.predict(X_test[X_train_sample1.columns]) predictions_2 = tree2.predict(X_test[X_train_sample2.columns]) predictions_3 = tree3.predict(X_test[X_train_sample3.columns]) preds = pd.DataFrame([predictions_1, predictions_2, predictions_3]).T preds.columns = ["tree1", "tree2", "tree3"] # 使用优先级规则 final_prediction = np.array([np.round((predictions_1[i] + predictions_2[i] + predictions_3[i])/3) for i in range(len(predictions_1))]) preds = pd.DataFrame([predictions_1, predictions_2, predictions_3, final_prediction, y_test]).T.head(20) preds.columns = ["tree1", "tree2", "tree3", "final", "label"]
当我运行这段代码时,我发现我的决策树开始预测不同的事情,这表明我们已经删除了树之间的许多相关性。
我的测试结果树之间不再总是彼此保持一致了
决策树基础
到目前为止,我们已经剖析了数据是如何被送入大量决策树的。在前面的代码示例中,我们使用DecisionTreeClassifier函数来训练决策树,但为了完全理解随机森林,我们需要先来解释一下什么是决策树。
一棵名副其实的决策树看起来像一棵倒挂的树。从一种高级别角度上看,该算法试图提出问题,并将数据分割成不同的节点。下图显示了决策树的形象示意。
决策树示例
决策树根据前一个问题的答案提出一系列问题。对于它提出的每一个问题,可能都有多个答案,我们不妨可以将其想象为分割节点。上一个问题的答案将决定树将询问的下一个问题。在询问了一系列问题之后的某个时刻,你得到了答案。
但是你怎么知道你的答案是准确的,或者你询问了正确的问题呢?实际上,您可以用几种不同的方法来评估决策树,我们当然也会对这些方法加以解释。
熵与信息增益
介绍到现在,我们需要讨论一个叫做熵(entropy)的新术语。从一种高角度来看,熵是衡量节点中杂质或随机性水平的一种方法。顺便说一句,还有另一种流行的方法来测量节点的杂质,称为基尼系数(Gini impurity),但我们不会在本文中解析该方法,因为它与许多关于熵的概念重叠,尽管计算略有不同。一般的想法是,熵或基尼系数越高,节点中的方差越大,我们的目标是减少这种不确定性。
决策树试图通过将所询问的节点拆分为更小、更同质的节点来最小化熵。熵的实际公式是:
为了进一步解释熵的概念,让我们回到那个弹珠的例子:
假设我有10个弹珠。其中5个是蓝色的,5个是绿色的。我的总体数据集的熵为1.0,那么计算熵的代码如下:
from collections import Counter from math import log2 #我的预测分类为:0或者1。其中,0代表蓝色弹珠,1代表是绿色弹珠。 data = [0, 0, 0, 1, 1, 1, 1, 0, 1, 0] # 获取标签的长度 len_labels = len(data) def calculate_entropy(data, len_labels): # 对每一种分类进行计数 counts = Counter(labels) # 我们计算分数,这个例子的输出应该是[.5,.5] probs = [count / num_labels for count in counts.values()] # 实际熵计算 return - sum(p * log2(p) for p in probs) calculate_entropy(labels, num_labels)
如果数据完全充满绿色弹珠,熵将为0,并且熵将随着我们接近50%的分割而增加。
每次减少熵,我们都会获得一些关于数据集的信息,因为我们减少了随机性。信息增益告诉我们哪个特征相对来说最能让我们最小化熵。计算信息增益的方法是:
entropy(parent) — [weighted_average_of_entropy(children)]
在这种情况下,父节点是原始节点,子节点是拆分节点的结果。
拆分一个节点
为了计算信息增益,我们执行以下操作:
- 计算父节点的熵
- 将父节点拆分为子节点
- 为每个子节点创建权重。这是通过number_of_samples_in_child_node/number_of_ssamples_in_parent_node测量的
- 计算每个子节点的熵
- 通过计算weight*entropy_of_child1+weight*entropy_of_child2创建[weighted_average_of_entropy(children)]
- 从父节点的熵中减去此加权熵
下面的代码实现了将父节点拆分为两个子节点的简单信息增益:
def information_gain(left_labels, right_labels, parent_entropy): """计算拆分的信息增益""" #计算左侧节点的权重 proportion_left_node = float(len(left_labels)) / (len(left_labels) + len(right_labels)) #计算右节点的权重 proportion_right_node = 1 - proportion_left_node # 计算子节点的加权平均值 weighted_average_of_child_nodes = ((proportion_left_node * entropy(left_labels)) + (proportion_right_node * entropy(right_labels))) #返回父节点熵——子节点的加权熵 return parent_entropy - weighted_average_of_child_nodes
决策树详解
考虑到上述这些概念,我们现在已经准备好实现一棵小型决策树了!
在没有任何指导的情况下,决策树将继续拆分节点,直到所有最终的叶节点都是纯的。控制树的复杂性的想法被称为修剪(pruning),我们可以在树完全建成后修剪它,也可以在生长阶段之前使用特定参数对树进行预修剪。预修剪树复杂度的一些方法是控制拆分的数量、限制最大深度(从根节点到叶节点的最长距离)或设置信息增益。
以下代码将所有这些概念联系在一起:
- 从一个数据集开始,其中有一个要预测的目标变量
- 计算原始数据集(根节点)的熵(或基尼系数)
- 查看每个特征并计算信息增益
- 选择具有最佳信息增益的最佳特征,这与导致熵降低最多的特征相同
保持增长,直到满足停止条件——在这种情况下,这是我们的最大深度限制,节点的熵为0。
import pandas as pd import numpy as np from math import log2 def entropy(data, target_col): # calculate the entropy of the entire dataset values, counts = np.unique(data[target_col], return_counts=True) entropy = np.sum([-count/len(data) * log2(count/len(data)) for count in counts]) return entropy def compute_information_gain(data, feature, target_col): parent_entropy = entropy(data, target_col) # 计算在给定特征上拆分的信息增益 split_values = np.unique(data[feature]) # initialize at 0 weighted_child_entropy = 0 # 计算加权熵,记住这与新节点中的点数有关 for value in split_values: sub_data = data[data[feature] == value] node_weight = len(sub_data)/len(data) weighted_child_entropy += node_weight * entropy(sub_data, target_col) #与之前相同的计算,我们只是从父节点熵中减去加权熵 return parent_entropy - weighted_child_entropy def grow_tree(data, features, target_col, depth=0, max_depth=3): # 我们将最大深度设置为3以“预修剪”或限制树的复杂性 if depth >= max_depth or len(np.unique(data[target_col])) == 1: # 如果达到最大深度或所有标签都相同,则停止生长树。所有标签相同意味着熵为0 return np.unique(data[target_col])[0] # 我们根据信息增益计算最佳特征(或最佳问题) node = {} gains = [compute_information_gain(data, feature, target_col) for feature in features] best_feature = features[np.argmax(gains)] for value in np.unique(data[best_feature]): sub_data = data[data[best_feature] == value] node[value] = grow_tree(sub_data, features, target_col, depth+1, max_depth) return node # 模拟一些数据并制作一个数据帧,注意我们是如何建立一个目标的 data = { 'A': [1, 2, 1, 2, 1, 2, 1, 2], 'B': [3, 3, 4, 4, 3, 3, 4, 4], 'C': [5, 5, 5, 5, 6, 6, 6, 6], 'target': [0, 0, 0, 1, 1, 1, 1, 0] } df = pd.DataFrame(data) # 定义我们的特征和标签 features = ["A", "B", "C"] target_col = "target" # 成长树 tree = grow_tree(df, features, target_col, max_depth=3) print(tree)
预测这棵树意味着,用新数据遍历生长的树,直到它到达叶节点。最后一个叶节点是预测。
关于随机森林的一些有趣的事情
我们在上一节中讨论的所有内容都是有关单棵决策树如何做出决策。下图将这些概念与我们之前讨论的随机森林采样概念联系起来。
具有解构决策树的随机森林架构
因为决策树实际上检查每个特征的信息增益,所以您可以计算随机森林中的特征重要性。特征重要性的计算通常被视为所有树中杂质的平均减少。随机森林不像Logistic回归模型那样可解释,因此特征重要性为我们提供了一点关于树如何生长的知识。
最后,有几种方法可以测试你训练过的随机森林。您可以始终使用经典的机器学习方法,并使用测试集来衡量模型对未知数据的概括程度。然而,这通常需要第二次计算。随机森林有一个独特的属性,称为袋外错误或OOB错误。还记得我们如何仅对数据集的一部分进行采样以构建每个树吗?
实际上,您可以在训练时使用其余的样本来进行验证,这实际上只有在算法存在集成特性的情况下才是可能的。这意味着,在一次试验中,我们就可以了解我们的模型如何很好地推广到未知数据。
总结
总结一下,我们在本文中所学到的内容:
- 随机森林实际上是一组不相关的决策树,它们做出预测并达成共识。这种共识是回归问题的平均分数和分类问题的优先级规则。
- 随机森林通过利用装袋算法和特征采样减轻相关性。通过利用这两种技术,单棵决策树可以查看我们集合的特定维度,并根据不同的因素进行预测。
- 决策树是通过在产生最高信息增益的特征上分割数据来生长的。信息增益被测量为杂质的最高减少。杂质通常通过熵或基尼系统来测量。
- 随机森林能够通过特征重要性实现有限程度的可解释性,这是特征的平均信息增益的度量。
- 随机森林也有能力在训练时进行交叉验证,这是一种被称为OOB错误的独特技术。这是可能的,得益于算法对上游数据进行采样的方式。
from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(df.drop('target', axis=1), df['target'], test_size=0.2, random_state=0) # 训练和评分随机森林 simple_rf_model = RandomForestClassifier(n_estimators=100, random_state=0) simple_rf_model.fit(X_train, y_train) print(f"accuracy: {simple_rf_model.score(X_test, y_test)}") # accuracy: 0.93
当查看训练随机森林的原始代码时,这几行代码中发生了多少不同的计算和评估,这让我感到惊讶。为了防止过度拟合,在树木和森林层面上进行评估,并实现一些基本的可解释性,需要考虑很多因素,此外,由于现有的所有框架,很容易进行设置。
我希望下次你训练随机森林模型时,你能够查看随机森林的scikit学习文档页面,并更好地了解你的所有选项。虽然有一些直观的默认设置,但应该清楚您可以进行多少不同的调整,以及这些技术中有多少可以扩展到其他模型。
我在写这篇文章时很开心,并且亲自了解了很多关于这个漂亮算法的工作原理。我希望你也能从中学习到一些东西!
译者介绍
朱先忠,51CTO社区编辑,51CTO专家博客、讲师,潍坊一所高校计算机教师,自由编程界老兵一枚。
原文标题:Demystifying the Random Forest,作者:Siddarth Ramesh
以上が機械学習ランダムフォレストアルゴリズムの実践的解析の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Apollo Researchの新しいレポートによると、高度なAIシステムの未確認の内部展開は、重大なリスクをもたらします。 主要なAI企業の間で一般的なこの監視の欠如は、Uncontに及ぶ潜在的な壊滅的な結果を可能にします

従来の嘘検出器は時代遅れです。リストバンドで接続されたポインターに依存すると、被験者のバイタルサインと身体的反応を印刷する嘘発見器は、嘘を識別するのに正確ではありません。これが、嘘の検出結果が通常裁判所で採用されない理由ですが、多くの罪のない人々が投獄されています。 対照的に、人工知能は強力なデータエンジンであり、その実用的な原則はすべての側面を観察することです。これは、科学者がさまざまな方法で真実を求めるアプリケーションに人工知能を適用できることを意味します。 1つのアプローチは、嘘発見器のように尋問されている人の重要な符号応答を分析することですが、より詳細かつ正確な比較分析を行います。 別のアプローチは、言語マークアップを使用して、人々が実際に言うことを分析し、論理と推論を使用することです。 ことわざにあるように、ある嘘は別の嘘を繁殖させ、最終的に

イノベーションの先駆者である航空宇宙産業は、AIを活用して、最も複雑な課題に取り組んでいます。 近代的な航空の複雑さの増加は、AIの自動化とリアルタイムのインテリジェンス機能を必要とします。

ロボット工学の急速な発展により、私たちは魅力的なケーススタディをもたらしました。 NoetixのN2ロボットの重量は40ポンドを超えており、高さは3フィートで、逆流できると言われています。 UnitreeのG1ロボットの重量は、N2のサイズの約2倍で、高さは約4フィートです。また、競争に参加している多くの小さなヒューマノイドロボットがあり、ファンによって前進するロボットさえあります。 データ解釈 ハーフマラソンは12,000人以上の観客を惹きつけましたが、21人のヒューマノイドロボットのみが参加しました。政府は、参加しているロボットが競争前に「集中トレーニング」を実施したと指摘したが、すべてのロボットが競争全体を完了したわけではない。 チャンピオン - 北京ヒューマノイドロボットイノベーションセンターによって開発されたティアンゴニ

人工知能は、現在の形式では、真にインテリジェントではありません。既存のデータを模倣して洗練するのに熟達しています。 私たちは人工知能を作成するのではなく、人工的な推論を作成しています。情報を処理するマシン、人間は

レポートでは、更新されたインターフェイスがGoogle Photos Androidバージョン7.26のコードに隠されていることがわかり、写真を見るたびに、新しく検出された顔のサムネイルの行が画面の下部に表示されます。 新しいフェイシャルサムネイルには名前タグが欠落しているため、検出された各人に関する詳細情報を見るには、個別にクリックする必要があると思います。今のところ、この機能は、Googleフォトが画像で見つけた人々以外の情報を提供しません。 この機能はまだ利用できないため、Googleが正確にどのように使用するかはわかりません。 Googleはサムネイルを使用して、選択した人のより多くの写真を見つけるためにスピードアップしたり、編集して個人を選択するなど、他の目的に使用することもできます。待って見てみましょう。 今のところ

補強能力は、人間のフィードバックに基づいて調整するためにモデルを教えることにより、AI開発を揺さぶりました。それは、監督された学習基盤と報酬ベースの更新をブレンドして、より安全で、より正確に、そして本当に助けます

科学者は、彼らの機能を理解するために、人間とより単純なニューラルネットワーク(C. elegansのものと同様)を広く研究してきました。 ただし、重要な疑問が生じます。新しいAIと一緒に効果的に作業するために独自のニューラルネットワークをどのように適応させるのか


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

ホットトピック









