Tencent が新世代のスーパー コンピューティング クラスターをリリース: 大規模モデルのトレーニング向けに、パフォーマンスが 3 倍向上
新世代の HCC ハイパフォーマンス コンピューティング クラスターは、最新世代の Xinghai 自社開発サーバーを使用し、NVIDIA H800 Tensor コア GPU を搭載しています。
Tencent 関係者によると、このクラスターは自社開発のネットワークとストレージ アーキテクチャに基づいており、3.2T の超高相互接続帯域幅、TB レベルのスループット容量、数千万の IOPS を実現します。実測結果では、新世代クラスタの計算能力性能が前世代に比べて3倍向上していることがわかりました。
昨年 10 月、Tencent は、1 兆のパラメーターを備えた最初の大規模 AI モデルである Hunyuan NLP 大規模モデルのトレーニングを完了しました。同じデータセットを使用すると、トレーニング時間が 50 日から 11 日に短縮されます。新世代クラスターに基づく場合、トレーニング時間はさらに 4 日に短縮されます。
コンピューティング レベルでは、サーバーのスタンドアロン パフォーマンスがクラスターのコンピューティング能力の基礎であり、Tencent Cloud の新世代クラスターの 1 枚の GPU カードは、さまざまな精度で最大 1979 TFlops のコンピューティング能力の出力をサポートします。
大規模モデルのシナリオ向けに、Xingxinghai の自社開発サーバーは、業界でサポートされているシェルフ密度より 30% 高い 6U 超高密度設計を採用しており、CPU の統合設計による並列コンピューティングの概念を使用しています。および GPU ノードにより、シングルポイント コンピューティングのパワー パフォーマンスがより高いレベルに向上します。
#ネットワーク レベルでは、コンピューティング ノード間に大規模なデータ対話要件があります。クラスターの規模が拡大すると、通信パフォーマンスがトレーニング効率に直接影響するため、ネットワークとコンピューティング ノード間の最大限の連携が必要になります。
テンセントが自社開発した Xingmai 高性能コンピューティング ネットワークは、業界最高の 3.2T RDMA 通信帯域幅を備えていると主張しています。実際の測定結果によると、同じ数の GPU を搭載した 3.2T Xingmai ネットワークは、1.6T ネットワークと比較してクラスター全体のコンピューティング能力が 20% 向上しています。
同時に、Tencent が自社開発した高性能集合通信ライブラリ TCCL がカスタム設計のソリューションに統合されています。業界のオープンソース集合通信ライブラリと比較して、大規模モデルのトレーニングの負荷パフォーマンスを 40% 最適化し、複数のネットワーク理由によって引き起こされるトレーニング中断の問題を排除します。
ストレージ レベルでは、大規模なモデルのトレーニング中に、多数のコンピューティング ノードがデータ セットのバッチを同時に読み取ります。データを短縮する必要があります。コンピューティング ノードの待ち時間を避けるために、読み込み時間をできるだけ長くします。
Tencent Cloud の自社開発ストレージ アーキテクチャは、テラバイト レベルのスループット機能と数千万の IOPS を備え、さまざまなシナリオでのストレージ ニーズをサポートします。 COS GooseFS オブジェクト ストレージ ソリューションと CFS Turbo 高性能ファイル ストレージ ソリューションは、大規模モデル シナリオにおける高性能、大スループット、大容量ストレージの要件を完全に満たします。
さらに、新世代クラスターには、Tencent Cloud が自社開発した TACO トレーニング アクセラレーション エンジンが統合されており、ネットワーク プロトコル、通信戦略、 AI フレームワークとモデルのコンパイル トレーニングの調整と計算の電力コストを大幅に節約します。
Tencent の Hunyuan 大規模モデルの背後にあるトレーニング フレームワークである AngelPTM も、Tencent Cloud TACO を通じてサービスを提供し、企業が大規模モデルの実装を加速できるように支援しています。
Tencent Cloud TI プラットフォームの大規模なモデル機能とツールボックスを通じて、企業は産業シナリオ データに基づいて微調整されたトレーニングを実施し、生産効率を向上させ、AI アプリケーションを迅速に作成して展開することができます。
分散型クラウドネイティブ ガバナンス機能に依存して、Tencent クラウド インテリジェント コンピューティング プラットフォームは、16 EFLOPS の浮動小数点コンピューティング能力を提供します。
以上がTencent が新世代のスーパー コンピューティング クラスターをリリース: 大規模モデルのトレーニング向けに、パフォーマンスが 3 倍向上の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ジョン・ロールズの独創的な1971年の著書「正義の理論」で、彼は私たちが今日のAIデザインの核となり、意思決定を使用するべきであるという思考実験を提案しました:無知のベール。この哲学は、公平性を理解するための簡単なツールを提供し、リーダーがこの理解を使用してAIを公平に設計および実装するための青写真を提供します。 あなたが新しい社会のルールを作っていると想像してください。しかし、前提があります。この社会でどのような役割を果たすかは事前にわかりません。過半数または限界少数派に属している、金持ちまたは貧弱、健康、または障害者になることがあります。この「無知のベール」の下で活動することで、ルールメーカーが自分自身に利益をもたらす決定を下すことができません。それどころか、人々はより公衆を策定する意欲があります

ロボットプロセスオートメーション(RPA)を専門とする多くの企業は、繰り返しタスクを自動化するためのボットを提供しています。 一方、プロセスマイニング、オーケストレーション、インテリジェントドキュメント処理スペシャル

AIの未来は、単純な単語の予測と会話シミュレーションを超えて動いています。 AIエージェントは出現しており、独立したアクションとタスクの完了が可能です。 このシフトは、AnthropicのClaudeのようなツールですでに明らかです。 AIエージェント:研究a

急速な技術の進歩は、仕事の未来に関する将来の見通しの視点を必要とします。 AIが単なる生産性向上を超えて、私たちの社会構造の形成を開始するとどうなりますか? Topher McDougalの今後の本、Gaia Wakes:

多くの場合、Harmonized System(HS)などのシステムからの「HS 8471.30」などの複雑なコードを含む製品分類は、国際貿易と国内販売に不可欠です。 これらのコードは、すべてのINVに影響を与える正しい税申請を保証します

データセンターと気候技術投資におけるエネルギー消費の将来 この記事では、AIが推進するデータセンターのエネルギー消費の急増と気候変動への影響を調査し、この課題に対処するための革新的なソリューションと政策の推奨事項を分析します。 エネルギー需要の課題:大規模で超大規模なデータセンターは、数十万の普通の北米の家族の合計に匹敵する巨大な力を消費し、新たなAIの超大規模なセンターは、これよりも数十倍の力を消費します。 2024年の最初の8か月で、Microsoft、Meta、Google、Amazonは、AIデータセンターの建設と運用に約1,250億米ドルを投資しました(JP Morgan、2024)(表1)。 エネルギー需要の成長は、挑戦と機会の両方です。カナリアメディアによると、迫り来る電気

生成AIは、映画とテレビの制作に革命をもたらしています。 LumaのRay 2モデル、滑走路のGen-4、OpenaiのSora、GoogleのVEO、その他の新しいモデルは、前例のない速度で生成されたビデオの品質を向上させています。これらのモデルは、複雑な特殊効果と現実的なシーンを簡単に作成できます。短いビデオクリップやカメラ認知モーション効果も達成されています。これらのツールの操作と一貫性を改善する必要がありますが、進歩の速度は驚くべきものです。 生成ビデオは独立した媒体になりつつあります。アニメーション制作が得意なモデルもあれば、実写画像が得意なモデルもあります。 AdobeのFireflyとMoonvalleyのMAであることは注目に値します

ChatGptユーザーエクスペリエンスは低下します:それはモデルの劣化ですか、それともユーザーの期待ですか? 最近、多数のCHATGPT有料ユーザーがパフォーマンスの劣化について不満を述べています。 ユーザーは、モデルへの応答が遅く、答えが短い、助けの欠如、さらに多くの幻覚を報告しました。一部のユーザーは、ソーシャルメディアに不満を表明し、ChatGptは「お世辞になりすぎて」、重要なフィードバックを提供するのではなく、ユーザービューを検証する傾向があることを指摘しています。 これは、ユーザーエクスペリエンスに影響を与えるだけでなく、生産性の低下やコンピューティングリソースの無駄など、企業の顧客に実際の損失をもたらします。 パフォーマンスの劣化の証拠 多くのユーザーは、特にGPT-4などの古いモデル(今月末にサービスから廃止される)で、ChatGPTパフォーマンスの大幅な分解を報告しています。 これ


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

ホットトピック









