ホームページ >テクノロジー周辺機器 >AI >勾配ブースティング アルゴリズムの意思決定プロセスの段階的な視覚化
勾配ブースティング アルゴリズムは、最も一般的に使用されるアンサンブル機械学習手法の 1 つであり、このモデルは、一連の弱い決定ツリーを使用して、強力な学習器を構築します。これは XGBoost モデルと LightGBM モデルの理論的基礎でもあるため、この記事では勾配ブースティング モデルを最初から構築して視覚化します。
勾配ブースティング アルゴリズム (勾配ブースティング) は、複数の弱分類器を構築し、それらを組み合わせて強分類器にすることでパフォーマンスを向上させるアンサンブル学習アルゴリズムです。モデル。
勾配ブースティング アルゴリズムの原理は、次のステップに分割できます。
勾配ブースティング アルゴリズムはシリアル アルゴリズムであるため、トレーニング速度が遅くなる可能性があります。実際の例で紹介しましょう:
特徴量 Set Xi と値 Yi があると仮定します。 、y の最良推定値を計算するには、y
##y の平均値から始めます#ステップごとに、F_m(x) を y|x に近づけたいと考えます。
各ステップで、x が与えられた場合に F_m(x) が y のより適切な近似値になるようにします。
まず、損失関数を定義します。
次に、損失関数が相対的に最も早く減少する方向に進みます。学習者 Fm 前方: すべての x に対して y を計算することはできないため、すべての x に対して y を計算することはできないため、この勾配の正確な値はわかりません。 x_i、勾配はステップ m の残差に正確に等しい: r_i!したがって、弱回帰木 h_m を使用して勾配関数 g_m を近似し、残差をトレーニングできます:
次に、学習器を更新します #これは勾配ブースティングです。使用しません。現在の学習器に対する損失関数。学習器の真の勾配 g_m は現在の学習器 F_{m} を更新するために使用されますが、弱い回帰木 h_m はそれを更新するために使用されます。#つまり、次の手順を繰り返します
1. 残差を計算します:2 . 回帰木 h_m をトレーニング サンプルとその残差 (x_i, r_i) に当てはめる #3. ステップ アルファでモデルを更新する
#見てください 複雑ですそうですか? このプロセスを視覚化すると、非常に明確になります。意思決定プロセスの視覚化
ここでは、sklearn の衛星データ セットを使用します。これは古典的な非線形カテゴリ データであるためです
import numpy as np import sklearn.datasets as ds import pandas as pd import matplotlib.pyplot as plt import matplotlib as mpl from sklearn import tree from itertools import product,islice import seaborn as snsmoonDS = ds.make_moons(200, noise = 0.15, random_state=16) moon = moonDS[0] color = -1*(moonDS[1]*2-1) df =pd.DataFrame(moon, columns = ['x','y']) df['z'] = color df['f0'] =df.y.mean() df['r0'] = df['z'] - df['f0'] df.head(10)
下图可以看到,该数据集是可以明显的区分出分类的边界的,但是因为他是非线性的,所以使用线性算法进行分类时会遇到很大的困难。
那么我们先编写一个简单的梯度增强模型:
def makeiteration(i:int): """Takes the dataframe ith f_i and r_i and approximated r_i from the features, then computes f_i+1 and r_i+1""" clf = tree.DecisionTreeRegressor(max_depth=1) clf.fit(X=df[['x','y']].values, y = df[f'r{i-1}']) df[f'r{i-1}hat'] = clf.predict(df[['x','y']].values) eta = 0.9 df[f'f{i}'] = df[f'f{i-1}'] + eta*df[f'r{i-1}hat'] df[f'r{i}'] = df['z'] - df[f'f{i}'] rmse = (df[f'r{i}']**2).sum() clfs.append(clf) rmses.append(rmse)
上面代码执行3个简单步骤:
将决策树与残差进行拟合:
clf.fit(X=df[['x','y']].values, y = df[f'r{i-1}']) df[f'r{i-1}hat'] = clf.predict(df[['x','y']].values)
然后,我们将这个近似的梯度与之前的学习器相加:
df[f'f{i}'] = df[f'f{i-1}'] + eta*df[f'r{i-1}hat']
最后重新计算残差:
df[f'r{i}'] = df['z'] - df[f'f{i}']
步骤就是这样简单,下面我们来一步一步执行这个过程。
第1次决策
Tree Split for 0 and level 1.563690960407257
第2次决策
Tree Split for 1 and level 0.5143677890300751
第3次决策
Tree Split for 0 and level -0.6523728966712952
第4次决策
Tree Split for 0 and level 0.3370491564273834
第5次决策
Tree Split for 0 and level 0.3370491564273834
第6次决策
Tree Split for 1 and level 0.022058885544538498
第7次决策
Tree Split for 0 and level -0.3030575215816498
第8次决策
Tree Split for 0 and level 0.6119407713413239
第9次决策
可以看到通过9次的计算,基本上已经把上面的分类进行了区分
我们这里的学习器都是非常简单的决策树,只沿着一个特征分裂!但整体模型在每次决策后边的越来越复杂,并且整体误差逐渐减小。
plt.plot(rmses)
这也就是上图中我们看到的能够正确区分出了大部分的分类
如果你感兴趣可以使用下面代码自行实验:
https://www.php.cn/link/bfc89c3ee67d881255f8b097c4ed2d67
以上が勾配ブースティング アルゴリズムの意思決定プロセスの段階的な視覚化の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。