検索
ホームページテクノロジー周辺機器AI説明可能な AI のための 10 の Python ライブラリ

XAI の目標は、モデルの動作と決定について意味のある説明を提供することです。この記事では、説明可能な AI で現在利用可能な 10 個の Python ライブラリをまとめています

XAI とは何ですか?

XAI、Explainable AI とは、人工知能 (AI) の意思決定プロセスと予測に対して明確でわかりやすい説明を提供できるシステムまたは戦略を指します。 XAI の目標は、モデルの意思決定における信頼性の向上、説明責任、透明性の提供に役立つ、ユーザーの行動と意思決定について有意義な説明を提供することです。 XAI は解釈に限定されず、ユーザーが推論を抽出して解釈しやすくする方法で ML 実験も行います。

実際には、XAI は、特徴の重要度の測定、視覚化技術の使用、または決定木や線形回帰モデルなどの本質的に解釈可能なモデルの構築など、さまざまな方法を通じて実現できます。どの方法を選択するかは、解決する問題の種類と必要な解釈可能性のレベルによって異なります。

AI システムは、ヘルスケア、金融、刑事司法など、ますます多くのアプリケーションで使用されており、人々の生活に対する AI の潜在的な影響が大きく、特定の理由を理解した上で意思決定が行われる場合に使用されています。これらの分野での誤った決定の代償は大きい(リスクが高い)ため、AI によって行われた決定であっても、妥当性と説明可能性を慎重にチェックする必要があるため、XAI の重要性がますます高まっています。

説明可能な AI のための 10 の Python ライブラリ

説明可能性実践のステップ

データ準備: この段階にはデータの収集と処理が含まれます。データは高品質でバランスが取れており、解決されている現実世界の問題を表している必要があります。バランスの取れた代表的なクリーンなデータがあれば、AI の説明可能性を維持するための今後の取り組みが軽減されます。

モデル トレーニング: モデルは、従来の機械学習モデルまたは深層学習ニューラル ネットワークのいずれかの準備されたデータでトレーニングされます。モデルの選択は、解決する問題と必要な解釈可能性のレベルによって異なります。モデルが単純であればあるほど、結果の解釈は容易になりますが、単純なモデルのパフォーマンスはあまり高くありません。

モデルの評価: モデルの解釈可能性を維持するには、適切な評価方法とパフォーマンス指標を選択する必要があります。この段階でモデルの解釈可能性を評価して、予測に対して有意義な説明を提供できることを確認することも重要です。

説明の生成: これは、特徴の重要度の測定、視覚化技術などのさまざまな技術を使用して、または本質的に説明可能なモデルを構築することによって実行できます。

説明の検証: モデルによって生成された説明の正確性と完全性を検証します。これは、説明が信頼できるものであることを確認するのに役立ちます。

展開と監視: XAI の作業は、モデルの作成と検証だけでは終わりません。導入後も継続的な説明作業が必要です。実際の環境で監視する場合は、システムのパフォーマンスと解釈可能性を定期的に評価することが重要です。

1. SHAP (SHapley Additive exPlanations)

SHAP は、あらゆる機械学習モデルの出力を説明するために使用できるゲーム理論の手法です。ゲーム理論の古典的な Shapley 値とその関連拡張を使用して、最適なクレジット割り当てをローカルな解釈に関連付けます。

説明可能な AI のための 10 の Python ライブラリ

2. LIME (ローカルで解釈可能なモデルに依存しない説明)

LIME は、特定の予測をローカルで近似するモデル非依存の手法です。モデルの動作を次のように囲みます。と連携。 LIME は、機械学習モデルが何をしているのかを説明しようとします。 LIME は、テキスト分類子、表形式データの分類子、または画像の個々の予測の解釈をサポートします。

説明可能な AI のための 10 の Python ライブラリ

3. Eli5

ELI5 は、機械学習分類器のデバッグとその予測の解釈に役立つ Python パッケージです。次の機械学習フレームワークとパッケージのサポートを提供します。

  • scikit-learn: ELI5 は、scikit-learn の線形分類器と回帰子の重みと予測を解釈でき、決定木はテキストまたはテキストとして出力できます。特徴の重要性を示し、デシジョン ツリーとツリー アンサンブルからの予測を説明する SVG。 ELI5 は、scikit-learn のテキスト ハンドラーも理解し、それに応じてテキスト データを強調表示します。
  • Keras - Grad-CAM を介した画像分類子予測の視覚的解釈。
  • XGBoost - 機能の重要性を示し、XGBClassifier、XGBRegressor、および XGBoost .boost の予測について説明します。
  • LightGBM - 機能の重要性を示し、LGBMClassifier と LGBMRegressor の予測について説明します。
  • CatBoost: CatBoostClassifier と CatBoostRegressor の機能の重要性を表示します。
  • lightning - ライトニング分類器とリグレッサーの重みと予測を解釈します。
  • sklearn-crfsuite。 ELI5 では、sklearn_crfsuite.CRF モデルの重みを確認できます。

基本的な使用法:

Show_weights() はモデルのすべての重みを表示します。Show_prediction() はモデルの個々の予測を確認するために使用できます

説明可能な AI のための 10 の Python ライブラリ

ELI5 は、ブラック ボックス モデルをチェックするためのいくつかのアルゴリズムも実装しています。

TextExplainer は、LIME アルゴリズムを使用して、テキスト分類子の予測を説明します。順列重要度法は、ブラックボックス推定器の特徴重要度を計算するために使用できます。

説明可能な AI のための 10 の Python ライブラリ

4. Shapash

Shapash は、モデルを理解しやすくするために、いくつかのタイプの視覚化を提供します。この概要を使用して、モデルによって提案された決定を理解します。このプロジェクトは MAIF データサイエンティストによって開発されました。 Shapash は主に一連の優れたビジュアライゼーションを通じてモデルを説明します。

Shapash は Web アプリケーション メカニズムを通じて動作し、Jupyter/ipython と完全に統合できます。

from shapash import SmartExplainer
 
 xpl = SmartExplainer(
 model=regressor,
 preprocessing=encoder, # Optional: compile step can use inverse_transform method
 features_dict=house_dict# Optional parameter, dict specifies label for features name
 )
 
 xpl.compile(x=Xtest,
y_pred=y_pred,
y_target=ytest, # Optional: allows to display True Values vs Predicted Values
)
 
 xpl.plot.contribution_plot("OverallQual")

説明可能な AI のための 10 の Python ライブラリ

5. アンカー

アンカーは、局所的な「十分な」予測条件を表すアンカー ポイントと呼ばれる高精度のルールを使用して、複雑なモデルの動作を説明します。このアルゴリズムは、高い確率を保証して、あらゆるブラックボックス モデルの説明を効率的に計算できます。

アンカーは、LIME のいくつかの制限 (データの目に見えないインスタンスにモデルを適合できないなど) が修正された LIME v2 と考えることができます。アンカーは個々の視点ではなく、ローカルなエリアを使用します。 SHAP よりも計算が軽量であるため、高次元または大規模なデータ セットで使用できます。ただし、ラベルは整数のみであるという制限もあります。

説明可能な AI のための 10 の Python ライブラリ

6. BreakDown

BreakDown は、線形モデルの予測を説明するために使用できるツールです。これは、モデルの出力を各入力特徴の寄与に分解することによって機能します。このパッケージには 2 つの主なメソッドがあります。 Explainer() と Preparation()

model = tree.DecisionTreeRegressor()
 model = model.fit(train_data,y=train_labels)
 
 #necessary imports
 from pyBreakDown.explainer import Explainer
 from pyBreakDown.explanation import Explanation
 
 #make explainer object
 exp = Explainer(clf=model, data=train_data, colnames=feature_names)
 
 #What do you want to be explained from the data (select an observation)
 explanation = exp.explain(observation=data[302,:],direction="up")

説明可能な AI のための 10 の Python ライブラリ

7、Interpret-Text

Interpret-Text は、NLP モデルのコミュニティ開発を組み合わせたものです。結果を表示するための手法と視覚化パネル。実験は複数の最先端のインタープリターで実行され、比較分析できます。このツールキットは、機械学習モデルを各タグ上でグローバルに解釈することも、各ドキュメント上でローカルに解釈することもできます。

以下は、このパッケージで利用可能なインタプリタのリストです:

  • Classical Text Explainer - (デフォルト: ロジスティック回帰用のワードバッグ)
  • Unified Information Explainer
  • 内省的根拠の説明

説明可能な AI のための 10 の Python ライブラリ

## その利点は、CUDA、RNN、BERT などのモデルをサポートしていることです。また、ドキュメント内の機能の重要性に関するパネルを生成できます

from interpret_text.widget import ExplanationDashboard
 from interpret_text.explanation.explanation import _create_local_explanation
 
 # create local explanation
 local_explanantion = _create_local_explanation(
 classification=True,
 text_explanation=True,
 local_importance_values=feature_importance_values,
 method=name_of_model,
 model_task="classification",
 features=parsed_sentence_list,
 classes=list_of_classes,
 )
 # Dash it
 ExplanationDashboard(local_explanantion)

説明可能な AI のための 10 の Python ライブラリ

8、aix360 (AI Explainability 360)

AI Explainability 360 ツールキットはオープン ソース ライブラリであり、このパッケージは IBM によって開発され、同社のプラットフォームで広く使用されています。 AI Explainability 360 には、エージェントの説明可能性メトリクスだけでなく、説明のさまざまな側面をカバーする包括的なアルゴリズムのセットが含まれています。

説明可能な AI のための 10 の Python ライブラリ

このツールキットは、次の論文のアルゴリズムとインジケーターを組み合わせています。
  • Towards Robust Interpretability with Self-Explaining Neural Networks, 2018. ref
  • Boolean Decision Rules via Column Generation, 2018. ref
  • Explanations Based on the Missing: Towards Contrastive Explanations with Pertinent Negatives, 2018. ref
  • Improving Simple Models with Confidence Profiles, , 2018. ref
  • Efficient Data Representation by Selecting Prototypes with Importance Weights, 2019. ref
  • TED: Teaching AI to Explain Its Decisions, 2019. ref
  • Variational Inference of Disentangled Latent Concepts from Unlabeled Data, 2018. ref
  • Generating Contrastive Explanations with Monotonic Attribute Functions, 2019. ref
  • Generalized Linear Rule Models, 2019. ref

9、OmniXAI

OmniXAI (Omni explable AI的缩写),解决了在实践中解释机器学习模型产生的判断的几个问题。

它是一个用于可解释AI (XAI)的Python机器学习库,提供全方位的可解释AI和可解释机器学习功能,并能够解决实践中解释机器学习模型所做决策的许多痛点。OmniXAI旨在成为一站式综合库,为数据科学家、ML研究人员和从业者提供可解释的AI。

from omnixai.visualization.dashboard import Dashboard
 # Launch a dashboard for visualization
 dashboard = Dashboard(
instances=test_instances,# The instances to explain
local_explanations=local_explanations, # Set the local explanations
global_explanations=global_explanations, # Set the global explanations
prediction_explanations=prediction_explanations, # Set the prediction metrics
class_names=class_names, # Set class names
explainer=explainer# The created TabularExplainer for what if analysis
 )
 dashboard.show()

説明可能な AI のための 10 の Python ライブラリ

10、XAI (eXplainable AI)

XAI 库由 The Institute for Ethical AI & ML 维护,它是根据 Responsible Machine Learning 的 8 条原则开发的。它仍处于 alpha 阶段因此请不要将其用于生产工作流程。

以上が説明可能な AI のための 10 の Python ライブラリの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は51CTO.COMで複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
外挿の包括的なガイド外挿の包括的なガイドApr 15, 2025 am 11:38 AM

導入 数週間で作物の進行を毎日観察する農民がいるとします。彼は成長率を見て、さらに数週間で彼の植物がどれほど背が高くなるかについて熟考し始めます。 thから

ソフトAIの台頭とそれが今日のビジネスにとって何を意味するかソフトAIの台頭とそれが今日のビジネスにとって何を意味するかApr 15, 2025 am 11:36 AM

ソフトAIは、おおよその推論、パターン認識、柔軟な意思決定を使用して特定の狭いタスクを実行するように設計されたAIシステムとして定義されていますが、曖昧さを受け入れることにより、人間のような思考を模倣しようとします。 しかし、これはBusineにとって何を意味しますか

AIフロンティア向けの進化するセキュリティフレームワークAIフロンティア向けの進化するセキュリティフレームワークApr 15, 2025 am 11:34 AM

答えは明確です。クラウドコンピューティングには、クラウドネイティブセキュリティツールへの移行が必要であるため、AIはAIの独自のニーズに特化した新しい種類のセキュリティソリューションを要求します。 クラウドコンピューティングとセキュリティレッスンの台頭 で

3つの方法生成AIは起業家を増幅します:平均に注意してください!3つの方法生成AIは起業家を増幅します:平均に注意してください!Apr 15, 2025 am 11:33 AM

起業家とAIと生成AIを使用して、ビジネスを改善します。同時に、すべてのテクノロジーと同様に、生成的AIが増幅器であることを覚えておくことが重要です。厳密な2024年の研究o

Andrew Ngによる埋め込みモデルに関する新しいショートコースAndrew Ngによる埋め込みモデルに関する新しいショートコースApr 15, 2025 am 11:32 AM

埋め込みモデルのパワーのロックを解除する:Andrew Ngの新しいコースに深く飛び込む マシンがあなたの質問を完全に正確に理解し、応答する未来を想像してください。 これはサイエンスフィクションではありません。 AIの進歩のおかげで、それはRになりつつあります

大規模な言語モデル(LLMS)の幻覚は避けられませんか?大規模な言語モデル(LLMS)の幻覚は避けられませんか?Apr 15, 2025 am 11:31 AM

大規模な言語モデル(LLM)と幻覚の避けられない問題 ChatGpt、Claude、GeminiなどのAIモデルを使用した可能性があります。 これらはすべて、大規模なテキストデータセットでトレーニングされた大規模な言語モデル(LLMS)、強力なAIシステムの例です。

60%の問題 -  AI検索がトラフィックを排出す​​る方法60%の問題 - AI検索がトラフィックを排出す​​る方法Apr 15, 2025 am 11:28 AM

最近の研究では、AIの概要により、産業と検索の種類に基づいて、オーガニックトラフィックがなんと15〜64%減少する可能性があることが示されています。この根本的な変化により、マーケティング担当者はデジタルの可視性に関する戦略全体を再考することになっています。 新しい

AI R&Dの中心に人間が繁栄するようにするMITメディアラボAI R&Dの中心に人間が繁栄するようにするMITメディアラボApr 15, 2025 am 11:26 AM

Elon UniversityがDigital Future Centerを想像している最近のレポートは、300人近くのグローバルテクノロジーの専門家を調査しました。結果のレポート「2035年に人間である」は、ほとんどがTを超えるAIシステムの採用を深めることを懸念していると結論付けました。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

mPDF

mPDF

mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

WebStorm Mac版

WebStorm Mac版

便利なJavaScript開発ツール

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

VSCode Windows 64 ビットのダウンロード

VSCode Windows 64 ビットのダウンロード

Microsoft によって発売された無料で強力な IDE エディター