バークレーは、駐車シナリオにおける初の高解像度データセットと予測モデルをオープンソース化し、ターゲット認識と軌道予測をサポートしました。
自動運転技術が進化を続ける中、車両の挙動と軌道予測は効率的かつ安全な運転にとって非常に重要な意味を持ちます。動的モデル演繹やアクセシビリティ分析などの従来の軌道予測手法には、明確な形式と強力な解釈可能性という利点がありますが、環境とオブジェクト間の相互作用のモデリング機能は、複雑な交通環境では比較的制限されます。したがって、近年では、さまざまな深層学習手法 (LSTM、CNN、Transformer、GNN など) や、BDD100K、nuScenes、Stanford Drone、ETH などのさまざまなデータセットに基づいて、多数の研究と応用が行われています。 /UCY、INTERACTION、ApolloScape なども登場しており、ディープ ニューラル ネットワーク モデルのトレーニングと評価を強力にサポートしており、GroupNet、Trajectron、MultiPath などの多くの SOTA モデルが良好なパフォーマンスを示しています。
上記のモデルとデータセットは通常の道路運転シナリオに集中しており、車線や信号機などのインフラストラクチャと機能を最大限に利用して予測プロセスを支援します。交通規制の制限、ほとんどの車両の移動パターンも比較的明確です。しかし、自動運転と自動駐車の「ラスト マイル」のシナリオでは、次のような多くの新たな困難に直面することになります。
- 駐車場の交通ルール 車線と車線の要件車線の境界線は厳密ではなく、車両は意のままに運転して「近道をする」ことがよくあります。
- 駐車タスクを完了するために、車両は頻繁に後退するなど、より複雑な駐車動作を実行する必要があります。駐車、ステアリングなどドライバーが不慣れな場合、駐車に長時間かかる可能性があります。
- 駐車場内には障害物や乱雑な物が多く、車間距離も近いため、注意しないと駐車できなくなります。衝突や傷の原因となる可能性があります
-
歩行者は駐車場を自由に歩き回ることが多く、車両にはさらなる回避行動が必要です
そのようなシナリオでは、単純に既存の軌道予測モデルが理想的な結果を達成することは困難であり、再トレーニング モデルには対応するデータのサポートが不足しています。 CNRPark EXT や CARPK などの現在の駐車シーンベースのデータ セットは、無料の駐車スペース検出のみを目的として設計されており、写真は監視カメラの一人称視点から取得され、サンプリング レートが低く、オクルージョンが多いため、駐車スペースを検出することはできません。軌道予測に使用されます。
2022 年 10 月に閉幕したばかりの第 25 回 IEEE 高度道路交通システム国際会議 (IEEE ITSC 2022) で、 カリフォルニア大学バークレー校の研究者らが発表した駐車シーン用の最初の高解像度ビデオと軌跡データ セットを作成し、このデータ セットに基づいて、CNN と Transformer アーキテクチャを使用して、「ParkPredict」 と呼ばれる軌跡予測モデルを提案しました。
- 紙のリンク: https://arxiv.org/abs/2204.10777
- データセットのホームページ、トライアルおよびダウンロード アプリケーション: https://sites.google.com/berkeley.edu/dlp-dataset (アクセスできない場合は、代替ページを試すことができます https://www.php.cn/link/966eaa9527eb956f0dc8788132986707 )
- Dataset Python API: https://github.com/MPC - Berkeley/dlp-dataset
データセット情報
データセットはドローンによって収集され、合計時間は 3.5 時間、ビデオ解像度は4Kの場合、サンプリングレートは25Hzです。展望台の駐車場面積は約140m×80m、合計約400台収容可能です。データセットには正確に注釈が付けられており、合計 1,216 台の自動車、3,904 台の自転車、3,904 台の歩行者の軌跡が収集されました。
再処理後、軌跡データを JSON 形式で読み取り、接続グラフ (グラフ) のデータ構造にロードできます。 ): 2 つのダウンロード形式: JSON のみ (推奨) : JSON ファイルには、すべての個体のタイプ、形状、軌跡などが含まれます。オープンソースの Python API を通じて、情報を直接読み取り、プレビューし、セマンティック イメージ (セマンティック イメージ) を生成できます。研究目的が軌跡と行動の予測のみであれば、JSON 形式であらゆるニーズを満たすことができます。 元のビデオと注釈: 研究が以下に基づいている場合オリジナルのカメラ ターゲットの検出、分離、生画像の追跡などのマシン ビジョンの分野のトピックについては、オリジナルのビデオと注釈をダウンロードする必要がある場合があります。これが必要な場合は、研究のニーズをデータセット申請書に明確に記載する必要があります。さらに、アノテーション ファイル自体を解析する必要があります。 アプリケーション例として、次の論文「ParkPredict: Multimodal Intent and Motion Prediction for Vehicles in parking Lots with CNN」を参照してください。 IEEE ITSC 2022 と Transformer 」では、研究チームはこのデータセットを使用して、CNN と Transformer アーキテクチャに基づいて駐車場のシーンにおける車両の意図 (Intent) と軌道 (Trajectory) を予測しました。 チームは CNN モデルを使用して、セマンティック イメージを構築することで車両の意図 (Intent) の分布確率を予測しました。このモデルは車両のローカル環境情報を構築するだけでよく、現在の環境に応じて利用可能な意図の数を継続的に変更できます。 チームは、Transformer モデルを改良し、意図 (Intent) の予測結果、車両の移動履歴、周囲環境のセマンティック マップを提供しました。マルチモーダルな意図と行動の予測を実現するための入力として。
概要
以上がバークレーは、駐車シナリオにおける初の高解像度データセットと予測モデルをオープンソース化し、ターゲット認識と軌道予測をサポートしました。の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

導入 数週間で作物の進行を毎日観察する農民がいるとします。彼は成長率を見て、さらに数週間で彼の植物がどれほど背が高くなるかについて熟考し始めます。 thから

ソフトAIは、おおよその推論、パターン認識、柔軟な意思決定を使用して特定の狭いタスクを実行するように設計されたAIシステムとして定義されていますが、曖昧さを受け入れることにより、人間のような思考を模倣しようとします。 しかし、これはBusineにとって何を意味しますか

答えは明確です。クラウドコンピューティングには、クラウドネイティブセキュリティツールへの移行が必要であるため、AIはAIの独自のニーズに特化した新しい種類のセキュリティソリューションを要求します。 クラウドコンピューティングとセキュリティレッスンの台頭 で

起業家とAIと生成AIを使用して、ビジネスを改善します。同時に、すべてのテクノロジーと同様に、生成的AIが増幅器であることを覚えておくことが重要です。厳密な2024年の研究o

埋め込みモデルのパワーのロックを解除する:Andrew Ngの新しいコースに深く飛び込む マシンがあなたの質問を完全に正確に理解し、応答する未来を想像してください。 これはサイエンスフィクションではありません。 AIの進歩のおかげで、それはRになりつつあります

大規模な言語モデル(LLM)と幻覚の避けられない問題 ChatGpt、Claude、GeminiなどのAIモデルを使用した可能性があります。 これらはすべて、大規模なテキストデータセットでトレーニングされた大規模な言語モデル(LLMS)、強力なAIシステムの例です。

最近の研究では、AIの概要により、産業と検索の種類に基づいて、オーガニックトラフィックがなんと15〜64%減少する可能性があることが示されています。この根本的な変化により、マーケティング担当者はデジタルの可視性に関する戦略全体を再考することになっています。 新しい

Elon UniversityがDigital Future Centerを想像している最近のレポートは、300人近くのグローバルテクノロジーの専門家を調査しました。結果のレポート「2035年に人間である」は、ほとんどがTを超えるAIシステムの採用を深めることを懸念していると結論付けました。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。
