検索
ホームページテクノロジー周辺機器AI機械学習で学ぶ必要がある 4 つの相互検証テクニック

機械学習で学ぶ必要がある 4 つの相互検証テクニック

Apr 12, 2023 pm 04:31 PM
機械学習アルゴリズムデータセット

はじめに

データセット上にモデルを作成することを検討しますが、目に見えないデータでは失敗します。
モデルをトレーニング データに適合させて、それが実際の目に見えないデータで完全に実行されるのを待つだけでは済みません。

これは過学習の例であり、モデルがトレーニング データ内のすべてのパターンとノイズを抽出しています。これを防ぐには、モデルがパターンの大部分を捕捉し、データ内のノイズをすべて拾っていないことを確認する方法 (低バイアスと低分散) が必要です。この問題に対処するための多くの手法の 1 つが相互検証です。

相互検証について理解する

特定のデータ セットに 1000 件のレコードがあり、それに対して train_test_split() が実行されるとします。 70% のトレーニング データと 30% のテスト データがあり、random_state = 0 であると仮定すると、これらのパラメーターの精度は 85% になります。ここで、random_state = 50 に設定すると、精度が 87% に向上するとします。

これは、異なるrandom_stateに対して精度値を選択し続けると、変動が発生することを意味します。これを防ぐために、相互検証と呼ばれる手法が登場します。

相互検証の種類

1 つを除外する相互検証 (LOOCV)

機械学習で学ぶ必要がある 4 つの相互検証テクニック

LOOCV では、1 を選択します。データ ポイントはテストとして使用され、残りのデータはすべて最初の反復からのトレーニング データになります。次の反復では、次のデータ ポイントをテストとして選択し、残りをトレーニング データとして選択します。これをデータセット全体に対して繰り返し、最後の反復で最後のデータ ポイントがテストとして選択されるようにします。

通常、反復相互検証手順の相互検証 R² を計算するには、各反復の R² スコアを計算し、その平均を取ります。

これにより、信頼性が高く偏りのないモデルのパフォーマンスの推定が可能になりますが、実行には計算コストがかかります。

2. K 分割相互検証

機械学習で学ぶ必要がある 4 つの相互検証テクニック

でK フォールド CV では、 データセットを k 個のサブセット (フォールドと呼ばれます) に分割し、すべてのサブセットでトレーニングしますが、モデルのトレーニング後の評価用に 1 つ (k-1) のサブセットを残します。

レコードが 1000 件あり、K=5 であると仮定します。この K 値は、反復が 5 回あることを意味します。テスト データとして考慮される最初の反復のデータ ポイントの数は、最初から 1000/5=200 です。次に、次の反復では、次の 200 データ ポイントがテストとみなされます。

全体の精度を計算するには、各反復の精度を計算し、平均を取ります。

このプロセスから得られる 最小精度は、すべての反復の中で生成される最も低い精度となり、同様に、最大精度 はすべての反復の中で生成されます。最高の精度。

#3.層別相互検証

機械学習で学ぶ必要がある 4 つの相互検証テクニック

# #Hierarchical CV は通常の k 分割相互検証の拡張ですが、特に分割が完全にランダムではなく、ターゲット クラス間の比率が各分割で完全なデータセットと同じである分類問題に適しています。

レコードが 1000 件あり、その中に 600 件の「はい」と 400 件の「いいえ」が含まれているとします。したがって、各実験では、トレーニングとテストに入力されるランダム サンプルが、各クラスの少なくとも一部のインスタンスがトレーニングとテストの分割の両方に存在するような方法で入力されることが保証されます。

4.

時系列相互検証

機械学習で学ぶ必要がある 4 つの相互検証テクニック

時系列 CV には一連のテスト セットがあり、各テスト セットには観測値が含まれています。対応するトレーニング セットには、テスト セットを形成した観測値

より前に発生した観測値のみが含まれています。 したがって、将来の観察を使用して予測を構築することはできません。

予測精度は、テスト セットを平均することによって計算されます。このプロセスは、予測の基礎となる「原点」が時間とともにロールフォワードされるため、「ローリング予測原点の評価」と呼ばれることもあります。

結論

機械学習では、通常、トレーニング セットで最高のパフォーマンスを発揮するアルゴリズムやモデルは必要ありません。代わりに、テスト セットで良好なパフォーマンスを発揮するモデル、および与えられた新しい入力データに対して一貫して良好なパフォーマンスを発揮するモデルが必要です。相互検証は、そのようなアルゴリズムやモデルを確実に特定できるようにするための重要なステップです。

以上が機械学習で学ぶ必要がある 4 つの相互検証テクニックの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は51CTO.COMで複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
あなたは無知のベールの後ろに職場AIを構築する必要がありますあなたは無知のベールの後ろに職場AIを構築する必要がありますApr 29, 2025 am 11:15 AM

ジョン・ロールズの独創的な1971年の著書「正義の理論」で、彼は私たちが今日のAIデザインの核となり、意思決定を使用するべきであるという思考実験を提案しました:無知のベール。この哲学は、公平性を理解するための簡単なツールを提供し、リーダーがこの理解を使用してAIを公平に設計および実装するための青写真を提供します。 あなたが新しい社会のルールを作っていると想像してください。しかし、前提があります。この社会でどのような役割を果たすかは事前にわかりません。過半数または限界少数派に属している、金持ちまたは貧弱、健康、または障害者になることがあります。この「無知のベール」の下で活動することで、ルールメーカーが自分自身に利益をもたらす決定を下すことができません。それどころか、人々はより公衆を策定する意欲があります

決定、決定…実用的な応用AIの次のステップ決定、決定…実用的な応用AIの次のステップApr 29, 2025 am 11:14 AM

ロボットプロセスオートメーション(RPA)を専門とする多くの企業は、繰り返しタスクを自動化するためのボットを提供しています。 一方、プロセスマイニング、オーケストレーション、インテリジェントドキュメント処理スペシャル

エージェントが来ています - 私たちがAIパートナーの隣ですることについてもっとエージェントが来ています - 私たちがAIパートナーの隣ですることについてもっとApr 29, 2025 am 11:13 AM

AIの未来は、単純な単語の予測と会話シミュレーションを超えて動いています。 AIエージェントは出現しており、独立したアクションとタスクの完了が可能です。 このシフトは、AnthropicのClaudeのようなツールですでに明らかです。 AIエージェント:研究a

共感がAI主導の未来におけるリーダーのコントロールよりも重要である理由共感がAI主導の未来におけるリーダーのコントロールよりも重要である理由Apr 29, 2025 am 11:12 AM

急速な技術の進歩は、仕事の未来に関する将来の見通しの視点を必要とします。 AIが単なる生産性向上を超えて、私たちの社会構造の形成を開始するとどうなりますか? Topher McDougalの今後の本、Gaia Wakes:

製品分類のためのAI:マシンは税法を習得できますか?製品分類のためのAI:マシンは税法を習得できますか?Apr 29, 2025 am 11:11 AM

多くの場合、Harmonized System(HS)などのシステムからの「HS 8471.30」などの複雑なコードを含む製品分類は、国際貿易と国内販売に不可欠です。 これらのコードは、すべてのINVに影響を与える正しい税申請を保証します

データセンターの要求は、気候技術のリバウンドを引き起こす可能性がありますか?データセンターの要求は、気候技術のリバウンドを引き起こす可能性がありますか?Apr 29, 2025 am 11:10 AM

データセンターと気候技術投資におけるエネルギー消費の将来 この記事では、AIが推進するデータセンターのエネルギー消費の急増と気候変動への影響を調査し、この課題に対処するための革新的なソリューションと政策の推奨事項を分析します。 エネルギー需要の課題:大規模で超大規模なデータセンターは、数十万の普通の北米の家族の合計に匹敵する巨大な力を消費し、新たなAIの超大規模なセンターは、これよりも数十倍の力を消費します。 2024年の最初の8か月で、Microsoft、Meta、Google、Amazonは、AIデータセンターの建設と運用に約1,250億米ドルを投資しました(JP Morgan、2024)(表1)。 エネルギー需要の成長は、挑戦と機会の両方です。カナリアメディアによると、迫り来る電気

AIとハリウッドの次の黄金時代AIとハリウッドの次の黄金時代Apr 29, 2025 am 11:09 AM

生成AIは、映画とテレビの制作に革命をもたらしています。 LumaのRay 2モデル、滑走路のGen-4、OpenaiのSora、GoogleのVEO、その他の新しいモデルは、前例のない速度で生成されたビデオの品質を向上させています。これらのモデルは、複雑な特殊効果と現実的なシーンを簡単に作成できます。短いビデオクリップやカメラ認知モーション効果も達成されています。これらのツールの操作と一貫性を改善する必要がありますが、進歩の速度は驚くべきものです。 生成ビデオは独立した媒体になりつつあります。アニメーション制作が得意なモデルもあれば、実写画像が得意なモデルもあります。 AdobeのFireflyとMoonvalleyのMAであることは注目に値します

ChatGptはゆっくりとAIの最大のYES-MANになりますか?ChatGptはゆっくりとAIの最大のYES-MANになりますか?Apr 29, 2025 am 11:08 AM

ChatGptユーザーエクスペリエンスは低下します:それはモデルの劣化ですか、それともユーザーの期待ですか? 最近、多数のCHATGPT有料ユーザーがパフォーマンスの劣化について不満を述べています。 ユーザーは、モデルへの応答が遅く、答えが短い、助けの欠如、さらに多くの幻覚を報告しました。一部のユーザーは、ソーシャルメディアに不満を表明し、ChatGptは「お世辞になりすぎて」、重要なフィードバックを提供するのではなく、ユーザービューを検証する傾向があることを指摘しています。 これは、ユーザーエクスペリエンスに影響を与えるだけでなく、生産性の低下やコンピューティングリソースの無駄など、企業の顧客に実際の損失をもたらします。 パフォーマンスの劣化の証拠 多くのユーザーは、特にGPT-4などの古いモデル(今月末にサービスから廃止される)で、ChatGPTパフォーマンスの大幅な分解を報告しています。 これ

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター

EditPlus 中国語クラック版

EditPlus 中国語クラック版

サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。