ホグワーツの魔法がなくても、他の人が何を考えているかを見ることができます。
手法は非常にシンプルで、安定拡散に基づいて脳画像を可視化します。
たとえば、あなたが目にするクマ、飛行機、電車はこんな感じです。
AI が脳信号を認識すると、生成される画像は次のとおりです。ポイントも含まれております。
この AI 脳読み取りテクノロジーは、CVPR 2023 に承認されたばかりで、ファンに瞬時の「頭蓋内オーガズム」を与えます。
#ワイルドすぎる!プロジェクトを促すことは忘れて、頭を使ってそれらの写真について「考える」だけで済みます。
安定拡散を使用して fMRI データから視覚画像を再構成することを想像してください。これは、非侵襲的技術の開発を意味するかもしれません。将来のブレインコンピューターインターフェース。
AI に人間の言語を直接スキップさせ、人間の脳で考えていることを認識させます。
微調整不要、AI で思考をダイレクトに再現
では、AI はどのようにして脳の読み取りを実現しているのでしょうか?最新の研究は、日本の大阪大学の研究チームによるものです。
大阪大学大学院生命機能研究科とNICTのCiNetの研究者らは、潜在拡散モデル(LDM)、より具体的には安定拡散を介して、fMRIデータから視覚体験を再構築しました。
全体の操作プロセスのフレームワークも非常にシンプルです: 1 つの画像エンコーダー、1 つの画像デコーダー、および 1 つのセマンティック デコーダー。
トレーニングする必要があるのは、下部視覚脳領域と上部視覚脳領域からの fMRI 信号を単一の安定拡散コンポーネントにマッピングする単純な線形モデルだけです。
具体的には、研究者らは脳領域を画像およびテキストエンコーダーへの入力としてマッピングしました。下位脳領域は画像エンコーダにマッピングされ、上位脳領域はテキスト エンコーダにマッピングされます。これにより、システムは再構成に画像構成と意味論的なコンテンツを使用できるようになります。
最初はデコード分析です。研究で使用された LDM モデルは、画像エンコーダー ε、画像デコーダー D、およびテキスト エンコーダー τ で構成されます。
研究者らは、それぞれ初期視覚野と高レベル視覚野の fMRI 信号から再構成画像 z の潜在表現と関連テキスト c を解読し、それらを入力として使用して、オートエンコーダ。
研究者らは、LDM のさまざまなコンポーネントからの fMRI 信号を予測するためのコーディング モデルを確立しました。 LDMの仕組み。
研究者らは、自然風景データセット (NSD) の fMRI 画像を使用して実験を行い、安定した拡散が可能かどうかをテストしました。被験者が見たものを再構成します。
符号化モデルと LDM に関連する潜像の予測精度は、最後のモデルが脳の後部の視覚野で最も高い予測精度を生み出すことがわかります。 。
被験者の視覚的再構成の結果は、z のみを使用して再構成された画像が元の画像と視覚的に一致していることを示しています。ただし、意味的な内容をキャプチャすることはできません。
c のみを使用して再構成された画像は意味的忠実度が高くなりますが、視覚的な一貫性が劣りますが、zc を使用して再構成された画像は意味的忠実度が高く、視覚的な一貫性が低い可能性があります。
#同じ画像上のすべての被写体からの再構成結果は、再構成の効果が被写体ごとに異なることを示しています。安定しています。比較的正確です。
特定の詳細の違いは、再構成プロセスのエラーではなく、個人の知覚経験やデータ品質の違いに起因する可能性があります。
#最後に、定量的評価の結果をグラフ化しました。
さまざまな結果は、研究で使用された方法が低レベルの視覚的外観をキャプチャできるだけでなく、元の刺激の高レベルの意味内容もキャプチャできることを示しています。
被験者間で精度には差があったが、これらの違いはfMRI画像の品質に関係していた、と研究者らは述べた。チームによると、再構成の品質は現在のSOTA手法と同等ですが、そこで使用されるAIモデルのトレーニングは必要ありません。
同時に、チームは fMRI データから派生したモデルを使用して、逆拡散プロセス中にセマンティック コンテンツがどのように生成されるかなど、安定拡散のさまざまな構成要素を研究しました。 U-Net でどのようなプロセスが行われるか。
ノイズ除去プロセスの初期段階では、U-Net のボトルネック レイヤー (オレンジ) が最高の予測パフォーマンスを生み出し、ノイズ除去プロセスが進むにつれて、初期レイヤー (青) が予測用に生成されます。初期の視覚野の活動のボトルネック層は、より高いレベルの視覚野に移行します。
これは、拡散プロセスの開始時に画像情報がボトルネック層で圧縮され、ノイズ除去により視覚野に U-Net 層間の分離が現れることを意味します。
# さらに、チームは普及のさまざまな段階での画像変換の定量的な説明を開発中です。このようにして、研究者らは、広く使用されているものの理解がまだ限られている拡散モデルを生物学的な観点からより深く理解することに貢献することを目指しています。
人間の脳画像はAIによって解読されたのでしょうか?
研究者たちは長年にわたり、人工知能モデルを使用して人間の脳からの情報を解読してきました。
ほとんどの手法の中核では、事前に記録された fMRI 画像がテキストまたは画像の生成 AI モデルへの入力として使用されます。
たとえば、2018 年の初めに、日本の研究者チームは、ニューラル ネットワークが fMRI 記録から画像を再構成する方法を示しました。
2019年、グループはサルのニューロンから画像を再構成し、ジャン・レミ・キング率いるメタの研究グループはテキストを取得するためのfMRIデータなどの新しい研究を発表した。
2022 年 10 月、テキサス大学オースティン校のチームは、GPT モデルが fMRI からデータを生成できることを示しました。スキャン ビデオ内で見られる意味論的なコンテンツを説明するテキストが推測されます。
2022 年 11 月、シンガポール国立大学、香港中文大学、スタンフォード大学の研究者は、MinD-Vis 拡散モデルを使用して、fMRI スキャンからの画像を大幅に再構成しました。当時利用可能な方法よりも正確です。
さらに遡ると、一部のネチズンは「脳波に基づいた画像の生成は少なくとも 2008 年から存在していた」と指摘しました。はい、安定拡散が何らかの方法で人々の心を読み取ることができるとほのめかすのはまったくばかげています。」
カリフォルニア大学バークレー校が Nature に掲載したこの論文では、次のように述べられています。脳波活動は、ビジュアル デコーダを使用して画像に変換できます。
しかし、最新の研究と比較すると、この再構成はまったく「高精細」とは言えず、ほとんど認識できません。 #########著者について###
高木 裕
高木 裕は、大阪大学の助教授です。彼の研究対象は、計算神経科学と人工知能の交差点にあります。
博士課程では、ATR 脳情報通信研究室で機能的磁気共鳴画像法 (fMRI) を使用して脳全体の機能的接続から個人差を予測する技術を研究しました。
最近では、オックスフォード大学の人間の脳活動に関するオックスフォード センターと、オックスフォード大学の心理学部で、機械学習技術を使用して、複雑な意思決定タスクにおける動的計算を理解しています。東京大学。
#西本真司
西本真司は大阪大学教授。彼の研究は、脳内の視覚および認知処理の定量的な理解に焦点を当てています。
より具体的には、西本教授のチームの研究の焦点は、自然な知覚および認知条件下で誘発される脳活動の予測モデルを構築することです。そして表現。
一部のネチズンは、この研究が夢の解釈に使用できるかどうかを著者に尋ねました。
「同じ技術を睡眠中の脳活動に適用することは可能ですが、そのような適用の精度は不明です。」
この研究を読んだ後: 合法性は完全に確立されています。
参考:
https: / /www.php.cn/link/0424d20160a6a558e5bf86a7bc9b67f0
https://www.php.cn/link/ 02d72b702eed900577b953ef7a9c1182
以上がAI読書脳が爆発!脳画像をスキャンし、安定拡散により画像をリアルに再現の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

大規模な言語モデル(LLM)は人気が急増しており、ツールコール機能は単純なテキスト生成を超えて機能を劇的に拡大しています。 これで、LLMSは動的なUI作成や自律的なaなどの複雑な自動化タスクを処理できます。

ビデオゲームは不安を緩和したり、ADHDの子供を焦点を合わせたり、サポートしたりできますか? ヘルスケアの課題が世界的に急増しているため、特に若者の間では、イノベーターはありそうもないツールであるビデオゲームに目を向けています。現在、世界最大のエンターテイメントインダスの1つです

「歴史は、技術の進歩が経済成長を促進する一方で、それ自体が公平な所得分布を確保したり、包括的な人間開発を促進したりしないことを示しています」とUNCTADの事務総長であるRebeca Grynspanは前文で書いています。

簡単な、Generative AIを交渉の家庭教師およびスパーリングパートナーとして使用してください。 それについて話しましょう。 革新的なAIブレークスルーのこの分析は、最新のAIに関する私の進行中のフォーブス列のカバレッジの一部であり、特定と説明を含む

バンクーバーで開催されたTED2025会議は、昨日4月11日の第36版を締めくくりました。サム・アルトマン、エリック・シュミット、パーマー・ラッキーを含む60か国以上の80人の講演者が登場しました。テッドのテーマ「人類が再考された」は、仕立てられたものでした

ジョセフ・スティグリッツは、2001年にノーベル経済賞を受賞した経済学者であり、2001年にノーベル経済賞を受賞しています。スティグリッツは、AIが既存の不平等を悪化させ、いくつかの支配的な企業の手に統合した力を悪化させ、最終的に経済を損なうと仮定しています。

グラフデータベース:関係を通じてデータ管理に革命をもたらす データが拡大し、その特性がさまざまなフィールドで進化するにつれて、グラフデータベースは、相互接続されたデータを管理するための変換ソリューションとして浮上しています。伝統とは異なり

大規模な言語モデル(LLM)ルーティング:インテリジェントタスク分布によるパフォーマンスの最適 LLMSの急速に進化する風景は、それぞれが独自の長所と短所を備えた多様なモデルを提供します。 創造的なコンテンツGenに優れている人もいます


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

ドリームウィーバー CS6
ビジュアル Web 開発ツール

WebStorm Mac版
便利なJavaScript開発ツール

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境
