検索
ホームページバックエンド開発Python チュートリアル簡単かつすぐに始められる人気の Python 視覚化モジュールを共有します。 !

簡単かつすぐに始められる人気の Python 視覚化モジュールを共有します。 !

アルタイルとは何ですか?

Altair は、分類と集計、データ変換、データ相互作用、グラフィック合成などを通じてデータを包括的に理解し、理解して分析することができ、インストールプロセスも非常に簡単であるため、統計可視化ライブラリと呼ばれています。

pip install altair
pip install vega_datasets
pip install altair_viewer

conda パッケージ マネージャーを使用して Altair モジュールをインストールしている場合、コードは次のとおりです:

conda install -c conda-forge altair vega_datasets

Altair の初体験

単純にヒストグラムを描画してみましょう。まず、DataFrame データ セットを作成します。コードは次のとおりです:

df = pd.DataFrame({"brand":["iPhone","Xiaomi","HuaWei","Vivo"],
"profit(B)":[200,55,88,60]})

次のステップは、ヒストグラムを描画するためのコードです:

import altair as alt
import pandas as pd
import altair_viewer
chart = alt.Chart(df).mark_bar().encode(x="brand:N",y="profit(B):Q")
# 展示数据,调用display()方法
altair_viewer.display(chart,inline=True)

output

簡単かつすぐに始められる人気の Python 視覚化モジュールを共有します。 !

構文構造全体の観点から見ると、まず alt.Chart() を使用して使用するデータ セットを指定し、次にインスタンス メソッド mark_ を使用します。 *() を使用してグラフのスタイルを描画し、最後に X 軸と Y 軸で表されるデータを指定します。N と Q がそれぞれ何を表すか知りたいかもしれません。これは変数の型の略称です。つまり、 , Altair モジュールはグラフィックスの描画に関係する変数の型を理解する必要があります。この方法でのみ、描画されたグラフィックスは期待どおりの効果になります。

N は名義変数 (Nominal) を表します。たとえば、携帯電話のブランドはすべて固有名詞ですが、Q は離散データに分割できる数値変数 (Quantitative) を表します。連続データ (continuous) は、時系列データに加えて、略語が T と順序変数 (O) で、たとえば、オンライン ショッピング プロセス中の販売者の評価には 1 ~ 5 の星が付けられます。

チャートの保存

最終的なチャートを保存するには、save() メソッドを直接呼び出して、オブジェクトを HTML ファイルとして保存します。コードは次のとおりです:

chart.save("chart.html")

また、コードの観点からは非常によく似た JSON ファイルとして保存することもできます。

chart.save("chart.json")

もちろん、以下に示すように、ファイルを画像形式で保存することもできます。

簡単かつすぐに始められる人気の Python 視覚化モジュールを共有します。 !

Altair の高度な操作

We On the上記をベースに、さらに派生および拡張すると、たとえば、横棒グラフを描画し、X 軸と Y 軸のデータを交換したいとします。コードは次のとおりです:

chart = alt.Chart(df).mark_bar().encode(x="profit(B):Q", y="brand:N")
chart.save("chart1.html")

output

簡単かつすぐに始められる人気の Python 視覚化モジュールを共有します。 !

同時に、折れ線グラフも描画してみます。mark_line() メソッドが呼び出され、コードは次のようになります:

## 创建一组新的数据,以日期为行索引值
np.random.seed(29)
value = np.random.randn(365)
data = np.cumsum(value)
date = pd.date_range(start="20220101", end="20221231")
df = pd.DataFrame({"num": data}, index=date)
line_chart = alt.Chart(df.reset_index()).mark_line().encode(x="index:T", y="num:Q")
line_chart.save("chart2.html")

output

簡単かつすぐに始められる人気の Python 視覚化モジュールを共有します。 !

通常、プロジェクト管理でよく使用されるガント チャートを描画することもできます。X 軸は時間と日付を追加し、Y 軸はプロジェクトの進行状況を表します。

project = [{"project": "Proj1", "start_time": "2022-01-16", "end_time": "2022-03-20"},
{"project": "Proj2", "start_time": "2022-04-12", "end_time": "2022-11-20"},
......
]
df = alt.Data(values=project)
chart = alt.Chart(df).mark_bar().encode(
 alt.X("start_time:T",
 axis=alt.Axis(format="%x",
 formatType="time",
 tickCount=3),
 scale=alt.Scale(domain=[alt.DateTime(year=2022, month=1, date=1),
 alt.DateTime(year=2022, month=12, date=1)])),
 alt.X2("end_time:T"),
 alt.Y("project:N", axis=alt.Axis(labelAlign="left",
labelFontSize=15,
labelOffset=0,
labelPadding=50)),
 color=alt.Color("project:N", legend=alt.Legend(labelFontSize=12,
symbolOpacity=0.7,
titleFontSize=15)))
chart.save("chart_gantt.html")

output

簡単かつすぐに始められる人気の Python 視覚化モジュールを共有します。 !

上の図から、チームが取り組んでいるいくつかのプロジェクトがわかります。もちろんプロジェクトは異なりますが、プロジェクトごとに期間も異なりますので、グラフに表示すると非常に直感的です。

次に、mark_circle() メソッドを呼び出して散布図を再度描画します。コードは次のとおりです。

df = data.cars()
## 筛选出地区是“USA”也就是美国的乘用车数据
df_1 = alt.Chart(df).transform_filter(
 alt.datum.Origin == "USA"
)
df = data.cars()
df_1 = alt.Chart(df).transform_filter(
 alt.datum.Origin == "USA"
)
chart = df_1.mark_circle().encode(
 alt.X("Horsepower:Q"),
 alt.Y("Miles_per_Gallon:Q")
)
chart.save("chart_dots.html")

output

簡単かつすぐに始められる人気の Python 視覚化モジュールを共有します。 !

# # もちろん、さらに最適化してグラフをより美しくしたり、色を追加したりすることもできます。コードは次のとおりです:

chart = df_1.mark_circle(color=alt.RadialGradient("radial",[alt.GradientStop("white", 0.0),
alt.GradientStop("red", 1.0)]),
 size=160).encode(
 alt.X("Horsepower:Q", scale=alt.Scale(zero=False,padding=20)),
 alt.Y("Miles_per_Gallon:Q", scale=alt.Scale(zero=False,padding=20))
)

output

簡単かつすぐに始められる人気の Python 視覚化モジュールを共有します。 !

We散布点のサイズを変更します。異なる散布点のサイズは、異なる値を表します。コードは次のとおりです:

chart = df_1.mark_circle(color=alt.RadialGradient("radial",[alt.GradientStop("white", 0.0),
alt.GradientStop("red", 1.0)]),
 size=160).encode(
 alt.X("Horsepower:Q", scale=alt.Scale(zero=False, padding=20)),
 alt.Y("Miles_per_Gallon:Q", scale=alt.Scale(zero=False, padding=20)),
 size="Acceleration:Q"
)

output

簡単かつすぐに始められる人気の Python 視覚化モジュールを共有します。 !

以上が簡単かつすぐに始められる人気の Python 視覚化モジュールを共有します。 !の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は51CTO.COMで複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
Pythonを使用した科学コンピューティングでアレイはどのように使用されていますか?Pythonを使用した科学コンピューティングでアレイはどのように使用されていますか?Apr 25, 2025 am 12:28 AM

Arraysinpython、特にvianumpy、arecrucialinscientificComputing fortheirefficienty andversitility.1)彼らは、fornumericaloperations、data analysis、andmachinelearning.2)numpy'simplementation incensuresfasteroperationsthanpasteroperations.3)arayableminablecickick

同じシステムで異なるPythonバージョンをどのように処理しますか?同じシステムで異なるPythonバージョンをどのように処理しますか?Apr 25, 2025 am 12:24 AM

Pyenv、Venv、およびAnacondaを使用して、さまざまなPythonバージョンを管理できます。 1)Pyenvを使用して、複数のPythonバージョンを管理します。Pyenvをインストールし、グローバルバージョンとローカルバージョンを設定します。 2)VENVを使用して仮想環境を作成して、プロジェクトの依存関係を分離します。 3)Anacondaを使用して、データサイエンスプロジェクトでPythonバージョンを管理します。 4)システムレベルのタスク用にシステムPythonを保持します。これらのツールと戦略を通じて、Pythonのさまざまなバージョンを効果的に管理して、プロジェクトのスムーズな実行を確保できます。

標準のPythonアレイでnumpyアレイを使用することの利点は何ですか?標準のPythonアレイでnumpyアレイを使用することの利点は何ですか?Apr 25, 2025 am 12:21 AM

numpyarrayshaveveraladvantages-averstandardpythonarrays:1)thealmuchfasterduetocベースのインプレンテーション、2)アレモレメモリ効率、特にlargedatasets、および3)それらは、拡散化された、構造化された形成術科療法、

アレイの均質な性質はパフォーマンスにどのように影響しますか?アレイの均質な性質はパフォーマンスにどのように影響しますか?Apr 25, 2025 am 12:13 AM

パフォーマンスに対する配列の均一性の影響は二重です。1)均一性により、コンパイラはメモリアクセスを最適化し、パフォーマンスを改善できます。 2)しかし、タイプの多様性を制限し、それが非効率につながる可能性があります。要するに、適切なデータ構造を選択することが重要です。

実行可能なPythonスクリプトを作成するためのベストプラクティスは何ですか?実行可能なPythonスクリプトを作成するためのベストプラクティスは何ですか?Apr 25, 2025 am 12:11 AM

craftexecutablepythonscripts、次のようになります

numpyアレイは、アレイモジュールを使用して作成された配列とどのように異なりますか?numpyアレイは、アレイモジュールを使用して作成された配列とどのように異なりますか?Apr 24, 2025 pm 03:53 PM

numpyarraysarasarebetterfornumeroperations andmulti-dimensionaldata、whilethearraymoduleissuitable forbasic、1)numpyexcelsinperformance and forlargedatasentassandcomplexoperations.2)thearraymuremememory-effictientivearientfa

Numpyアレイの使用は、Pythonで配列モジュール配列の使用と比較してどのように比較されますか?Numpyアレイの使用は、Pythonで配列モジュール配列の使用と比較してどのように比較されますか?Apr 24, 2025 pm 03:49 PM

NumPyArraySareBetterforHeavyNumericalComputing、whilethearrayarayismoreSuitableformemory-constrainedprojectswithsimpledatatypes.1)numpyarraysofferarays andatiledance andpeperancedatasandatassandcomplexoperations.2)thearraymoduleisuleiseightweightandmemememe-ef

CTypesモジュールは、Pythonの配列にどのように関連していますか?CTypesモジュールは、Pythonの配列にどのように関連していますか?Apr 24, 2025 pm 03:45 PM

ctypesallowsinging andmanipulatingc-stylearraysinpython.1)usectypestointerfacewithclibrariesforperformance.2)createc-stylearraysfornumericalcomputations.3)passarraystocfunctions foreffientientoperations.how、how、becuutiousmorymanagemation、performanceo

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

PhpStorm Mac バージョン

PhpStorm Mac バージョン

最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

MantisBT

MantisBT

Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

VSCode Windows 64 ビットのダウンロード

VSCode Windows 64 ビットのダウンロード

Microsoft によって発売された無料で強力な IDE エディター