翻訳者 | Zhu Xianzhong
改訂 | Sun Shujuan
写真 1 :原作者自身がデザインしたイルミナド プロジェクトの表紙
2019 年、世界保健機関は、世界には視覚障害のある人が約 22 億人いると推定し、そのうち少なくとも 1 人は視覚障害者であると推定しました。 10億人が予防できたかもしれない、あるいは今も視覚障害に苦しんでいる。眼科医療に関しては、世界は予防、治療、リハビリテーションサービスの適用範囲や質の不平等など、多くの課題に直面しています。訓練を受けた眼科医療スタッフが不足しており、眼科医療サービスは主要な医療システムに十分に統合されていません。私の目標は、これらの課題に一緒に対処するための行動を促すことです。この記事で紹介するプロジェクトは、私の現在のデータ サイエンスの頂点プロジェクトである Iluminado の一部です。
Capstone プロジェクトの設計目標
このプロジェクトを作成する目的は、深層学習アンサンブル モデルをトレーニングし、最終的にはそのモデルを低コストで非常に簡単に実装することです。所得世帯が利用でき、低コストで初期の疾病リスク診断が可能です。私のモデル手順を使用することで、眼科医は網膜眼底写真に基づいて即時の介入が必要かどうかを判断できます。
プロジェクト データ セット ソース
OphthAI は、複数の疾患に対応した眼底画像データ セット (網膜眼底複数疾患画像データセット、「RFMiD」と呼ばれる) を提供しています。一般公開されています。画像データセット。このデータセットには、3 台の異なる眼底カメラで撮影され、2 人の上級網膜専門家によって判断されたコンセンサスに基づいて注釈が付けられた 3,200 枚の眼底画像が含まれています。
これらの画像は、2009 年から 2010 年の間に実施された数千件の検査から抽出され、高品質の画像とかなりの数の低品質の画像の両方を選択してデータセットをより困難にしました。
データセットは、トレーニング セット (60% または 1920 枚の画像)、評価セット (20% または 640 枚の画像)、テスト セット (20% または 640 枚の写真) の 3 つの部分に分割されています。 )。平均して、トレーニングセット、評価セット、およびテストセットにおける疾患のある人の割合は、それぞれ60±7%、20±7%、および20±5%でした。このデータセットの基本的な目的は、日常の臨床診療で発生するさまざまな眼疾患に対処することであり、合計 45 のカテゴリの疾患/病状が特定されています。これらのラベルは、RFMiD_Training_Labels.CSV、RFMiD_Validation_Labels.SSV、RFMiD_Testing_Labels.CSV という 3 つの CSV ファイルにあります。
画像出典
下の画像は、眼底カメラと呼ばれるツールを使用して撮影されました。眼底カメラは、フラッシュ カメラに取り付けられた特殊な低倍率顕微鏡で、眼底、つまり目の奥の網膜層を撮影するために使用されます。
現在、ほとんどの眼底カメラは手持ち式なので、患者はレンズを直接見るだけで済みます。このうち、明るいフラッシュ部分は眼底像が撮影されたことを示している。
ハンドヘルド カメラには、さまざまな場所に持ち運べ、車椅子ユーザーなど特別なニーズを持つ患者にも対応できるという利点があります。さらに、必要なトレーニングを受けた従業員であれば誰でもカメラを操作できるため、十分な治療を受けていない糖尿病患者が迅速、安全、効率的に年次検査を受けることができます。
眼底イメージングシステムの撮影状況:
図 2: それぞれの視覚特性に基づいて撮影された画像:(a)糖尿病性網膜症(DR)、(b)加齢黄斑変性症(ARMD)、および(c)中程度のヘイズ(MH)。
最終的な診断はどこで行われますか?
最初のスクリーニングプロセスはディープラーニングによって支援されますが、最終的な診断は細隙灯検査を使用して眼科医によって行われます。
生体顕微鏡診断としても知られるこのプロセスには、生きた細胞の検査が含まれます。医師は顕微鏡検査を行って、患者の目に異常があるかどうかを判断します。
図 3: 細隙灯検査の図
#網膜画像分類における深層学習の応用従来の機械学習アルゴリズムとは異なり、深さ畳み込みニューラルネットワーク (CNN) は、多層モデルを使用して、生データから特徴を自動的に抽出して分類できます。
最近、学術コミュニティは、糖尿病性網膜症や異常転帰 (AUROC) などのさまざまな眼疾患を特定するための畳み込みニューラル ネットワーク (CNN) の使用に関する多数の論文を発表しました。 >0.9) 緑内障など
データ メトリクスAUROC スコアは、ROC 曲線を数値に要約し、複数のしきい値を同時に処理するときにモデルがどの程度うまく機能するかを示します。 AUROC スコア 1 は完全なスコアを表し、AUROC スコア 0.5 はランダムな推測に対応することに注意してください。
使用した方法 - クロスエントロピー損失関数
クロス エントロピーは、機械学習の損失関数としてよく使用されます。クロス エントロピーは、エントロピーの定義に基づいた情報理論の分野の指標であり、通常 2 つの確率分布間の差を計算するために使用されます。一方、クロス エントロピーは 2 つの分布間の合計エントロピーを計算するものと考えることができます。クロスエントロピーは、対数損失と呼ばれるロジスティック損失にも関連します。これら 2 つの測定値は異なるソースから得られますが、分類モデルの損失関数として使用される場合、どちらの方法も同じ数量を計算するため、互換的に使用できます。
(具体的な詳細については、https://machinelearningmastery.com/logistic-regression-with-maximum-likelihood-estimation/ を参照してください)
クロスエントロピーとは?
クロスエントロピーは、確率変数または一連のイベントが与えられた場合の 2 つの確率分布間の差の尺度です。情報は、イベントのエンコードと送信に必要なビット数を数値化したものであることを思い出してください。低確率のイベントにはより多くの情報が含まれる傾向がありますが、高確率のイベントには含まれる情報が少なくなります。情報理論では、出来事の「驚き」を表現することが好きです。出来事が起こる可能性が低いほど、その出来事はより驚くべきものであり、より多くの情報が含まれていることを意味します。
- 低確率イベント (驚くべき): 詳細。
- 高確率のイベント (当然のこと): 情報が少ない。
- #イベント P(x) の確率が与えられると、イベント x の情報 h(x) は次のように計算できます。
h(x) = -log(P(x))
図 4: 完璧な図 (画像提供: Vlastimil Martinek)
エントロピーは、確率分布からのランダム性の伝達です。選択したイベントに必要なビット。歪んだ分布はエントロピーが低くなりますが、イベントの確率が等しい分布は一般にエントロピーが高くなります。
# 図 5: ターゲット確率と予測確率の比率の完璧な図 (画像提供: Vlastimil Martinek)
歪んだ確率分布では「驚き」が少なく、起こり得る出来事が支配的になるため、エントロピーが低くなります。相対的に言えば、平衡分布はより驚くべきものであり、イベントが発生する可能性が等しいため、エントロピーが高くなります。
歪んだ確率分布 (当然のこと): エントロピーが低い。
- バランスの取れた確率分布 (驚くべきことに): 高いエントロピー。
- エントロピー H(x) は、次の図に示すように、x 個の離散状態の集合 x とその確率 P(x) を持つ確率変数に対して計算できます。
図 6: マルチレベルのクロスエントロピー式 (画像出典: Vlastimil Martinek)
マルチカテゴリー分類 - 私たちは複数のカテゴリカル クロス エントロピーの使用は、ターゲットがワンホット エンコーディング ベクトル スキームを使用するクロス エントロピーの特定のアプリケーション ケースです。 (興味のある読者は Vlastimil Martinek の記事を参照してください)
図 7: パンダとネコの損失計算の完全な分解図 (画像出典: Vlastimil Martinek)
#図 8: 損失値の完全な分解図 1 (画像出典: Vlastimil Martinek)
##図 9: 損失値の完全な分解図 2 (画像出典: Vlastimil Martinek)
図 9:確率と損失の視覚的表現 (画像出典: Vlastimil Martinek)
バイナリのクロスエントロピーについてはどうですか?図 10: カテゴリカルクロスエントロピー式の図 (画像ソース: Vlastimil Martinek)
プロジェクト 私たちはバイナリ分類、つまりバイナリ クロス エントロピー スキーム、つまりターゲットが 0 または 1 のクロス エントロピー スキームを使用することを選択しました。ターゲットをそれぞれ [0,1] または [1,0] のホット エンコーディング ベクトルに変換して予測すると、クロス エントロピー式を使用して計算できます。
図 11: バイナリ クロス エントロピー計算式の図 (画像提供: Vlastimil Martinek)
非対称性の使用損失アルゴリズムは不均衡なデータを処理します典型的なマルチラベル モデル環境では、データ セットの特徴に不均衡な数の正のラベルと負のラベルが含まれる可能性があります。この時点で、負のラベルを好むデータセットの傾向が最適化プロセスに大きな影響を及ぼし、最終的には正のラベルの勾配が強調されなくなり、予測結果の精度が低下します。
これは、私が現在選択しているデータセットが直面している状況とまったく同じです。
このプロジェクトでは、BenBaruch らが開発した非対称損失アルゴリズムを使用しています (図 12 を参照)。これは、マルチラベル分類を解決する手法ですが、重大な問題もあります。カテゴリー. 偏った分布状況。
私が考える方法は、クロスエントロピーの正と負の成分を非対称に変更することで、負のラベル部分の重みを減らし、最終的に上記のことを強調することです。処理がより困難なポジティブラベル。
テスト対象のアーキテクチャ
要約すると、この記事のプロジェクトでは、次の図に示すアーキテクチャが使用されます。
##図 13 (画像提供: Sixu)
上記のアーキテクチャで使用される主要なアルゴリズムには、主に次のものが含まれます。
- DenseNet-121
- InceptionV3
- Xception
- MobileNetV2
- VGG16
さらに、上記のアルゴリズム関連のコンテンツは、この記事の Capstone プロジェクトを完了した後に必ず更新されます。興味のある読者はぜひご期待ください!
翻訳者紹介
Zhu Xianzhong 氏、51CTO コミュニティ編集者、51CTO エキスパートブロガー、講師、濰坊市の大学のコンピューター教師、そしてフリーランスプログラミング業界のベテラン。
#元のタイトル: ##網膜画像分類のための深層アンサンブル学習 (CNN) キャシー・カム著
以上が網膜画像分類のためのディープアンサンブル学習アルゴリズムの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

「AI-Ready労働力」という用語は頻繁に使用されますが、サプライチェーン業界ではどういう意味ですか? サプライチェーン管理協会(ASCM)のCEOであるAbe Eshkenaziによると、批評家ができる専門家を意味します

分散型AI革命は静かに勢いを増しています。 今週の金曜日、テキサス州オースティンでは、ビテンサーのエンドゲームサミットは極めて重要な瞬間を示し、理論から実用的な応用に分散したAI(DEAI)を移行します。 派手なコマーシャルとは異なり

エンタープライズAIはデータ統合の課題に直面しています エンタープライズAIの適用は、ビジネスデータを継続的に学習することで正確性と実用性を維持できるシステムを構築する大きな課題に直面しています。 NEMOマイクロサービスは、NVIDIAが「データフライホイール」と呼んでいるものを作成することにより、この問題を解決し、AIシステムがエンタープライズ情報とユーザーインタラクションへの継続的な露出を通じて関連性を維持できるようにします。 この新しく発売されたツールキットには、5つの重要なマイクロサービスが含まれています。 NEMOカスタマイザーは、より高いトレーニングスループットを備えた大規模な言語モデルの微調整を処理します。 NEMO評価者は、カスタムベンチマークのAIモデルの簡素化された評価を提供します。 Nemo Guardrailsは、コンプライアンスと適切性を維持するためにセキュリティ管理を実装しています

AI:芸術とデザインの未来 人工知能(AI)は、前例のない方法で芸術とデザインの分野を変えており、その影響はもはやアマチュアに限定されませんが、より深く影響を与えています。 AIによって生成されたアートワークとデザインスキームは、広告、ソーシャルメディアの画像生成、Webデザインなど、多くのトランザクションデザインアクティビティで従来の素材画像とデザイナーに迅速に置き換えられています。 ただし、プロのアーティストやデザイナーもAIの実用的な価値を見つけています。 AIを補助ツールとして使用して、新しい美的可能性を探求し、さまざまなスタイルをブレンドし、新しい視覚効果を作成します。 AIは、アーティストやデザイナーが繰り返しタスクを自動化し、さまざまなデザイン要素を提案し、創造的な入力を提供するのを支援します。 AIはスタイル転送をサポートします。これは、画像のスタイルを適用することです

最初はビデオ会議プラットフォームで知られていたZoomは、エージェントAIの革新的な使用で職場革命をリードしています。 ZoomのCTOであるXD Huangとの最近の会話は、同社の野心的なビジョンを明らかにしました。 エージェントAIの定義 huang d

AIは教育に革命をもたらしますか? この質問は、教育者と利害関係者の間で深刻な反省を促しています。 AIの教育への統合は、機会と課題の両方をもたらします。 Tech Edvocate NotesのMatthew Lynch、Universitとして

米国における科学的研究と技術の開発は、おそらく予算削減のために課題に直面する可能性があります。 Natureによると、海外の雇用を申請するアメリカの科学者の数は、2024年の同じ期間と比較して、2025年1月から3月まで32%増加しました。以前の世論調査では、調査した研究者の75%がヨーロッパとカナダでの仕事の検索を検討していることが示されました。 NIHとNSFの助成金は過去数か月で終了し、NIHの新しい助成金は今年約23億ドル減少し、3分の1近く減少しました。リークされた予算の提案は、トランプ政権が科学機関の予算を急激に削減していることを検討しており、最大50%の削減の可能性があることを示しています。 基礎研究の分野での混乱は、米国の主要な利点の1つである海外の才能を引き付けることにも影響を与えています。 35

Openaiは、強力なGPT-4.1シリーズを発表しました。実際のアプリケーション向けに設計された3つの高度な言語モデルのファミリー。 この大幅な飛躍は、より速い応答時間、理解の強化、およびTと比較した大幅に削減されたコストを提供します


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

WebStorm Mac版
便利なJavaScript開発ツール

ホットトピック









