数十年にわたる基礎研究を経て、視覚認識の分野は大規模な視覚表現学習の新時代を迎えました。事前トレーニングされた大規模ビジョン モデルは、特徴学習およびビジョン アプリケーションにとって不可欠なツールとなっています。視覚表現学習システムのパフォーマンスは、モデルのニューラル ネットワーク アーキテクチャ、ネットワークのトレーニングに使用される方法、トレーニング データという 3 つの主な要素によって大きく影響されます。各要素の改善は、モデル全体のパフォーマンスの向上に貢献します。
ニューラル ネットワーク アーキテクチャ設計の革新は、表現学習の分野で常に重要な役割を果たしてきました。畳み込みニューラル ネットワーク アーキテクチャ (ConvNet) は、コンピューター ビジョンの研究に大きな影響を与え、手動で実装された特徴量エンジニアリングに依存せずに、さまざまな視覚認識タスクで汎用的な特徴量学習手法を使用できるようにしました。もともと自然言語処理のために開発されたトランスフォーマー アーキテクチャは、近年、さまざまなサイズのモデルやデータセットに適しているため、他の深層学習分野でも広く使用されるようになりました。
ConvNeXt アーキテクチャの出現により、従来の ConvNet が最新化され、純粋な畳み込みモデルがモデルやデータセット サイズの変化にも適応できることが証明されました。ただし、ニューラル ネットワーク アーキテクチャの設計空間を探索する最も一般的な方法は、依然として ImageNet で教師あり学習のパフォーマンスをベンチマークすることです。
別の考え方は、視覚表現学習の焦点をラベル付き教師あり学習から自己教師あり事前トレーニングに移すことです。自己教師ありアルゴリズムは、マスクされた言語モデリングを視覚領域に導入し、すぐに視覚表現学習の一般的な方法になりました。ただし、自己教師あり学習では通常、教師あり学習用に設計されたアーキテクチャが使用され、そのアーキテクチャが固定されていることが前提となります。たとえば、Masked Autoencoder (MAE) はビジュアル トランスフォーマー アーキテクチャを使用します。
これらのアーキテクチャを自己教師あり学習フレームワークと組み合わせることが 1 つのアプローチですが、これにはいくつかの特有の問題が発生します。たとえば、ConvNeXt と MAE を組み合わせると、次の問題が発生します。MAE には、トランスフォーマーのシーケンス処理能力に最適化された特定のエンコーダー/デコーダー設計があり、これにより、計算集約型のエンコーダーが目に見えるパッチに集中するため、事前トレーニングが削減されます。費用がかかります。ただし、この設計は、高密度のスライディング ウィンドウを使用する標準の ConvNet と互換性がない可能性があります。さらに、アーキテクチャとトレーニング目標の関係を考慮しなければ、最適なパフォーマンスを達成できるかどうかは不明確です。実際、既存の研究では、マスクベースの自己教師あり学習で ConvNet をトレーニングするのは難しいことが示されており、実験証拠では、Transformer と ConvNet が特徴学習において分岐する可能性があり、それが最終的な表現の品質に影響を与える可能性があることが示されています。
この目的を達成するために、KAIST、Meta、およびニューヨーク大学の研究者 (ConvNeXt の最初の著者である Liu Zhuang と ResNeXt の最初の著者である Xie Saining を含む) が共同でネットワークを設計することを提案しました。同じフレームワークの下でのアーキテクチャとマスクされた自動エンコーディング。この目的は、マスクベースの自己教師あり学習を ConvNeXt モデルに適用して、トランスフォーマーと同等の結果を取得できるようにすることです。
論文アドレス: https://arxiv.org/pdf/2301.00808v1.pdf
マスクされたオートエンコーダを設計する際、この研究ではマスク付きの入力をスパースパッチのセットとして扱い、スパースコンボリューションを使用して目に見える部分を処理します。このアイデアは、大規模な 3D 点群を処理する際のスパース コンボリューションの使用からインスピレーションを受けました。具体的には、この研究では、スパース畳み込みを使用して ConvNeXt を実装し、微調整中に特別な処理を行わずに重みを標準の高密度ネットワーク層に変換して戻すことを提案しています。事前トレーニングの効率をさらに向上させるために、この研究ではトランス デコーダーを単一の ConvNeXt に置き換え、設計全体を完全に畳み込み型にしました。研究者らは、これらの変更を加えた後、学習された特徴は役に立ち、ベースライン結果を改善しましたが、微調整されたパフォーマンスは依然としてトランスベースのモデルよりも劣っていることを観察しました。
次に、この研究では、さまざまなトレーニング構成を使用して ConvNeXt の特徴空間を分析します。マスクされた入力に対して ConvNeXt を直接トレーニングしたとき、研究者は MLP 層で潜在的な特徴崩壊の問題を発見しました。この問題を解決するために、この研究では、グローバル応答正規化層 (Global Response Normalization Layer) を追加して、チャネル間の機能競合を強化することを提案します。この改善は、マスクされたオートエンコーダーを使用してモデルが事前トレーニングされている場合に最も効果的であり、教師あり学習からの固定アーキテクチャ設計を再利用することが最良のアプローチではない可能性があることを示唆しています。
上記の改善に基づいて、この研究では ConvNeXt V2 を提案します。ConvNeXt V2 は、マスクされたオートエンコーダーと組み合わせた場合に優れたパフォーマンスを示します。同時に、研究者らは、ConvNeXt V2 は、ImageNet での分類タスク、COCO でのターゲット検出、ADE20K でのセマンティック セグメンテーションなど、さまざまな下流タスクにおいて、純粋な ConvNet に比べてパフォーマンスが大幅に向上していることを発見しました。
完全畳み込みマスク オートエンコーダ
この研究で提案された方法は概念的に単純であり、完全畳み込み方式で実装されています。学習信号は、元の視覚入力を高いマスク率でランダムにマスクし、残りのコンテキストに基づいて欠落部分をモデルに予測させることによって生成されます。全体的な枠組みを下図に示します。
このフレームワークは、スパース畳み込みに基づく ConvNeXt エンコーダと軽量の ConvNeXt デコーダで構成されており、オートエンコーダの構造は非対称です。エンコーダーは可視ピクセルのみを処理しますが、デコーダーはエンコードされたピクセルとマスク トークンを使用して画像を再構築します。同時に、損失はマスクされた領域でのみ計算されます。
全体的な反応の正規化
脳には、ニューロンの多様性を促進する多くのメカニズムが存在します。たとえば、側方抑制は、活性化ニューロンの応答を強化するのに役立ち、刺激に対する個々のニューロンのコントラストと選択性を高めると同時に、ニューロンの集団全体の応答の多様性も高めます。深層学習では、この形式の側方抑制は、応答の正規化によって実現できます。この研究では、グローバル応答正規化 (GRN) と呼ばれる新しい応答正規化レイヤーを導入しています。これは、チャネル間のコントラストと選択性を高めることを目的としています。 GRN ユニットは、1) グローバル特徴集約、2) 特徴正規化、3) 特徴キャリブレーションの 3 つのステップで構成されます。以下の図に示すように、GRN レイヤーを元の ConvNeXt ブロックにマージできます。
研究者らは実験に基づいて、GRN を適用する場合、LayerScale は必要なく、削除できることを発見しました。この新しいブロック設計を活用して、研究では、軽量 (Atto) から計算集約型 (Huge) まで、ConvNeXt V2 モデル ファミリと呼ばれる、さまざまな効率と容量を持つさまざまなモデルを作成しました。
GRN の役割を評価するために、この研究では FCMAE フレームワークを使用して ConvNeXt V2 を事前トレーニングしました。以下の図 3 の視覚的な表示と図 4 のコサイン距離分析から、ConvNeXt V2 が機能崩壊の問題を効果的に軽減していることがわかります。コサイン距離の値は一貫して高く、ネットワーク層の転送中に機能の多様性を維持できることを示しています。これは、MAE を使用して事前トレーニングされた ViT モデルに似ています。これは、ConvNeXt V2 の学習動作が、同様のマスク画像事前トレーニング フレームワークの下での ViT と同様であることを示しています。
調査では、微調整パフォーマンスをさらに評価しました。結果を以下の表に示します。
GRN を装備すると、FCMAE 事前トレーニング モデルは、300 エポックを使用してトレーニングされた教師ありモデルよりも大幅に優れたパフォーマンスを発揮できます。 GRN は、特徴の多様性を強化することで表現品質を向上させます。これはマスクベースの事前トレーニングにとって重要ですが、ConvNeXt V1 モデルにはありません。この改善は、パラメーターのオーバーヘッドを追加したり、FLOPS を増加させたりすることなく達成されることに注目してください。
最後に、この研究では、事前トレーニングと微調整における GRN の重要性についても調査しています。以下の表 2(f) に示すように、GRN が微調整から削除されるか、新しく初期化された GRN が微調整中に追加されるかにかかわらず、パフォーマンスは大幅に低下します。これは、GRN が事前トレーニングと微調整の両方で重要であることを示しています。
興味のある読者は、論文の原文を読んで研究の詳細を学ぶことができます。
以上がConvNeXt V2 は、最も単純な畳み込みアーキテクチャのみを使用し、Transformer に劣らないパフォーマンスを実現します。の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

1 前言在发布DALL·E的15个月后,OpenAI在今年春天带了续作DALL·E 2,以其更加惊艳的效果和丰富的可玩性迅速占领了各大AI社区的头条。近年来,随着生成对抗网络(GAN)、变分自编码器(VAE)、扩散模型(Diffusion models)的出现,深度学习已向世人展现其强大的图像生成能力;加上GPT-3、BERT等NLP模型的成功,人类正逐步打破文本和图像的信息界限。在DALL·E 2中,只需输入简单的文本(prompt),它就可以生成多张1024*1024的高清图像。这些图像甚至

“Making large models smaller”这是很多语言模型研究人员的学术追求,针对大模型昂贵的环境和训练成本,陈丹琦在智源大会青源学术年会上做了题为“Making large models smaller”的特邀报告。报告中重点提及了基于记忆增强的TRIME算法和基于粗细粒度联合剪枝和逐层蒸馏的CofiPruning算法。前者能够在不改变模型结构的基础上兼顾语言模型困惑度和检索速度方面的优势;而后者可以在保证下游任务准确度的同时实现更快的处理速度,具有更小的模型结构。陈丹琦 普

Wav2vec 2.0 [1],HuBERT [2] 和 WavLM [3] 等语音预训练模型,通过在多达上万小时的无标注语音数据(如 Libri-light )上的自监督学习,显著提升了自动语音识别(Automatic Speech Recognition, ASR),语音合成(Text-to-speech, TTS)和语音转换(Voice Conversation,VC)等语音下游任务的性能。然而这些模型都没有公开的中文版本,不便于应用在中文语音研究场景。 WenetSpeech [4] 是

由于复杂的注意力机制和模型设计,大多数现有的视觉 Transformer(ViT)在现实的工业部署场景中不能像卷积神经网络(CNN)那样高效地执行。这就带来了一个问题:视觉神经网络能否像 CNN 一样快速推断并像 ViT 一样强大?近期一些工作试图设计 CNN-Transformer 混合架构来解决这个问题,但这些工作的整体性能远不能令人满意。基于此,来自字节跳动的研究者提出了一种能在现实工业场景中有效部署的下一代视觉 Transformer——Next-ViT。从延迟 / 准确性权衡的角度看,

3月27号,Stability AI的创始人兼首席执行官Emad Mostaque在一条推文中宣布,Stable Diffusion XL 现已可用于公开测试。以下是一些事项:“XL”不是这个新的AI模型的官方名称。一旦发布稳定性AI公司的官方公告,名称将会更改。与先前版本相比,图像质量有所提高与先前版本相比,图像生成速度大大加快。示例图像让我们看看新旧AI模型在结果上的差异。Prompt: Luxury sports car with aerodynamic curves, shot in a

人工智能就是一个「拼财力」的行业,如果没有高性能计算设备,别说开发基础模型,就连微调模型都做不到。但如果只靠拼硬件,单靠当前计算性能的发展速度,迟早有一天无法满足日益膨胀的需求,所以还需要配套的软件来协调统筹计算能力,这时候就需要用到「智能计算」技术。最近,来自之江实验室、中国工程院、国防科技大学、浙江大学等多达十二个国内外研究机构共同发表了一篇论文,首次对智能计算领域进行了全面的调研,涵盖了理论基础、智能与计算的技术融合、重要应用、挑战和未来前景。论文链接:https://spj.scien

译者 | 李睿审校 | 孙淑娟近年来, Transformer 机器学习模型已经成为深度学习和深度神经网络技术进步的主要亮点之一。它主要用于自然语言处理中的高级应用。谷歌正在使用它来增强其搜索引擎结果。OpenAI 使用 Transformer 创建了著名的 GPT-2和 GPT-3模型。自从2017年首次亮相以来,Transformer 架构不断发展并扩展到多种不同的变体,从语言任务扩展到其他领域。它们已被用于时间序列预测。它们是 DeepMind 的蛋白质结构预测模型 AlphaFold

说起2010年南非世界杯的最大网红,一定非「章鱼保罗」莫属!这只位于德国海洋生物中心的神奇章鱼,不仅成功预测了德国队全部七场比赛的结果,还顺利地选出了最终的总冠军西班牙队。不幸的是,保罗已经永远地离开了我们,但它的「遗产」却在人们预测足球比赛结果的尝试中持续存在。在艾伦图灵研究所(The Alan Turing Institute),随着2022年卡塔尔世界杯的持续进行,三位研究员Nick Barlow、Jack Roberts和Ryan Chan决定用一种AI算法预测今年的冠军归属。预测模型图


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。
