#論文リンク: https://arxiv.org/pdf/2105.10375.pdf
##アプリケーションとコード:
- https://www.php.cn/link/c42af2fa7356818e0389593714f59b52
- # https://www.php.cn/link/60a6c4002cc7b29142def8871531281a 背景
画像分類は、現在最も成功しているAIの実用化技術の1つであり、人々の日常生活に組み込まれています。画像分類、画像検索、OCR、コンテンツレビュー、認識認証、その他の分野など、ほとんどのコンピュータビジョンタスクで広く使用されています。一般的なコンセンサスは次のとおりです。「データ セットが大きくなり、ID の数が増えると、データ セットが適切にトレーニングされている限り、対応する分類タスクの効果は向上します。」しかし、数千万、さらには数億のIDを前にした場合、現在普及しているDLフレームワークでは、このような超大規模な分類訓練を直接低コストで行うことは困難です。
この問題を解決する最も直観的な方法は、クラスタリングを通じてより多くのグラフィックス カード リソースを消費することですが、それでも、大規模な ID での分類問題には次の問題が依然として残ります。
1) コストの問題: 分散トレーニング フレームワークに大量のデータがある場合、メモリのオーバーヘッド、マルチマシン通信、データの保存と読み込みにより多くのリソースが消費されます。
2) ロングテール問題: 実際のシナリオでは、データセットが数億の ID に達すると、ほとんどの ID の画像サンプルの数が非常に少なくなることがよくあります。データはロングテールで分散されるため、直接トレーニングではより良い結果を得るのが難しいことは明らかです。
この記事の残りの章では、超大規模分類フレームワークの既存のソリューションと、それに対応する低コスト分類フレームワーク FFC の原理とコツに焦点を当てます。
方法
この方法を紹介する前に、この記事ではまず現在の超大規模分類の主な課題を確認します。課題 1: コストは依然として高い
次に示すように、ID の数が増えるほど、分類器のメモリ要件も大きくなります。図:
ビデオ メモリが大きければ大きいほど、より多くのマシン カードが必要になり、コストも高くなります。マルチマシンに対応するハードウェア インフラストラクチャのコストは、コラボレーションも高くなります。同時に、分類 ID の数が非常に大きな規模に達すると、主要な計算量は分類器の最後の層で無駄になり、スケルトン ネットワークにかかる時間は無視できます。
課題 2: ロングテール学習の難しさ
実際のシナリオでは、数百人のうちの絶対多数がほとんどの ID の画像サンプルの数は非常に少なく、ロングテール データの分布が非常に明白であるため、直接トレーニングを収束させることが困難になります。同じ重みでトレーニングすると、ロングテール サンプルが圧倒され、学習が不十分になります。現時点では、不均衡なサンプルが使用されるのが一般的ですが、この研究テーマでは参考になる手法がたくさんありますが、シンプルな超大規模分類フレームワークに組み込むのに適した手法は何でしょうか?
上記の 2 つの課題について、まず、既存の実現可能なソリューションにはどのようなものがあるのか、そしてそれらが上記 2 つの課題をうまく解決できるかどうかを見てみましょう。
#実現可能な方法 1: 指標の学習
#実現可能な方法2: PFC フレームワーク
実現可能な方法 3: VFC フレームワーク
# #この論文の方法: FFC フレームワーク
#大規模分類のために FC を使用してトレーニングした場合の損失関数は次のとおりです:
次に、トレーニングを開始する前に、サンプルの一部を ID グループに送信します (ここでは、ID サンプルの 10% がグループに入れられると仮定します)。このとき、ギャラリーはランダムなパラメータを使用します。
その後、トレーニングが開始されると、バッチ サンプルが 1 つずつプローブ ネットに入ります。各バッチのサンプルには 2 つの状況があります: 1.) グループ内にこのサンプルと同じ ID を持つフィーチャがある、2.) グループ内に類似サンプルのフィーチャがない。これら 2 つのケースについては、それぞれ既存の ID と新しい ID と呼びます。既存のサンプルの場合、特徴とグループ内の特徴を使用して内積を実行し、ラベルを使用してクロスエントロピー損失関数を計算して、それを返します。新鮮なサンプルの場合、グループ内のサンプルとのコサイン類似性を最小限に抑えます。
最後に、既存のクラス センターに重み付けする原則に基づいて、グループ内のフィーチャを更新し、新しいクラス センターに置き換えます。ギャラリー ネットの場合、移動平均戦略を使用してプローブ内のパラメーターを徐々に更新します。
本稿の手法:裏技紹介 ##1.) 導入するIDグループのサイズは調整可能です パラメータ、通常、デフォルトは 30,000 です。
#2.) 安定した学習を実現するために、moco クラスのメソッドを参照し、移動平均を導入します。対応する収束条件は次のとおりです。
#実験結果
1. ダブルローダーアブレーション実験
## 2. SOTA 手法の効果比較
3. ビデオ メモリとサンプル スループットの比較
以上がDAMOアカデミーのオープンソース低コスト大規模分類フレームワークFFCの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

導入 迅速なエンジニアリングでは、「思考のグラフ」とは、グラフ理論を使用してAIの推論プロセスを構造化および導く新しいアプローチを指します。しばしば線形sを含む従来の方法とは異なります

導入 おめでとう!あなたは成功したビジネスを運営しています。ウェブページ、ソーシャルメディアキャンペーン、ウェビナー、会議、無料リソース、その他のソースを通じて、毎日5000の電子メールIDを収集します。次の明白なステップはです

導入 今日のペースの速いソフトウェア開発環境では、最適なアプリケーションパフォーマンスが重要です。応答時間、エラーレート、リソース利用などのリアルタイムメトリックを監視することで、メインに役立ちます

「ユーザーは何人いますか?」彼は突き出した。 「私たちが最後に言ったのは毎週5億人のアクティブであり、非常に急速に成長していると思います」とアルトマンは答えました。 「わずか数週間で2倍になったと言った」とアンダーソンは続けた。 「私はそのprivと言いました

導入 Mistralは、最初のマルチモーダルモデル、つまりPixtral-12B-2409をリリースしました。このモデルは、Mistralの120億個のパラメーターであるNemo 12bに基づいて構築されています。このモデルを際立たせるものは何ですか?これで、画像とTexの両方を採用できます

クエリに応答するだけでなく、情報を自律的に収集し、タスクを実行し、テキスト、画像、コードなどの複数のタイプのデータを処理するAIを搭載したアシスタントがいることを想像してください。未来的に聞こえますか?これでa

導入 金融業界は、効率的な取引と信用の可用性を促進することにより経済成長を促進するため、あらゆる国の発展の基礎となっています。取引の容易さとクレジット

導入 データは、ソーシャルメディア、金融取引、eコマースプラットフォームなどのソースから前例のないレートで生成されています。この連続的な情報ストリームを処理することは課題ですが、


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません
