検索
ホームページテクノロジー周辺機器AI2D画像を使って3Dの人体を作成し、好きな服を着たり、動きを変えたりすることができます。

NeRF が提供する微分可能なレンダリングのおかげで、最近の 3D 生成モデルは静止したオブジェクトに対して素晴らしい結果を達成しました。ただし、人体のようなより複雑で変形可能なカテゴリでは、3D 生成には依然として大きな課題が伴います。この論文では、超解像度モデルを使用せずに高解像度 (512x256) の 3D 人体生成を可能にする、人体の効率的な組み合わせ NeRF 表現を提案します。 EVA3D は、4 つの大規模な人体データ セットに関する既存のソリューションを大幅に上回り、コードはオープンソースになっています。

2D画像を使って3Dの人体を作成し、好きな服を着たり、動きを変えたりすることができます。


  • 論文名: EVA3D: 2D 画像コレクションからの合成 3D 人間の生成
  • ##論文アドレス: https://arxiv.org/abs/2210.04888
  • プロジェクト ホームページ: https://hongfz16.github.io/projects/EVA3D.html
  • オープン ソース コード: https://github.com/hongfz16/EVA3D
  • Colab デモ: https://colab.research.google。 com/github/hongfz16/EVA3D/blob/main/notebook/EVA3D_Demo.ipynb
  • ハグフェイスのデモ: https://huggingface.co/spaces/hongfz16/EVA3D


2D画像を使って3Dの人体を作成し、好きな服を着たり、動きを変えたりすることができます。


2D画像を使って3Dの人体を作成し、好きな服を着たり、動きを変えたりすることができます。

##Background


NeRF が提供する微分可能レンダリング アルゴリズム、EG3D、StyleSDF などの 3 次元生成アルゴリズムを静的オブジェクトの生成に使用しますカテゴリ すでに非常に良い結果が得られています。しかし、人体は顔や CAD モデルなどのカテゴリに比べて外観や形状がより複雑で、変形しやすいため、2D 画像から 3D 人体を生成する方法を学習することは依然として非常に困難な作業です。研究者は、ENARF-GAN や GNARF など、このタスクに関していくつかの試みを行ってきましたが、人間の非効率的な表現によって制限され、高解像度の生成を達成できず、そのため生成の品質も非常に低くなります。

この問題を解決するために、この論文では、高解像度 (512x256) の 3D 人体 GAN トレーニングと生成を実現する、効率的な結合 3D 人体 NeRF 表現を提案します。この記事で提案する人間の NeRF 表現と 3 次元人間 GAN トレーニング フレームワークを以下に紹介します。

効率的な人間 NeRF 表現

この記事で提案する人間 NeRF は、人間の姿勢と形状の便利な制御を提供するパラメーター化された人体モデル SMPL に基づいています。 NeRF モデリングを行う場合、以下の図に示すように、この記事では人体を 16 の部分に分割します。各部分は、ローカル モデリング用の小規模な NeRF ネットワークに対応します。各部分をレンダリングするとき、この論文ではローカル NeRF について推論するだけで済みます。このスパース レンダリング方法では、より少ないコンピューティング リソースでネイティブの高解像度レンダリングを実現することもできます。

たとえば、ボディおよびアクション パラメータが逆線形ブレンド スキニングである人体をレンダリングする場合、ポーズ空間のサンプリング ポイントを標準空間に変換します。次に、正準空間内のサンプリング ポイントが 1 つまたは複数のローカル NeRF 境界ボックスに属することが計算され、特定のサンプリング ポイントが複数のローカル NeRF 境界ボックスに分類される場合、NeRF モデルが推論されて各サンプリング ポイントに対応する色と濃度が取得されます。 NeRF オーバーラップ領域では、各 NeRF モデルが推論され、ウィンドウ関数を使用して複数の結果が補間され、最終的に、この情報は最終的なレンダリングを取得するための光の統合に使用されます。

3 次元人体 GAN フレームワーク

提案された効率的な人体 NeRF 表現に基づいて、この記事では 3 次元人体 GAN トレーニング フレームワークを実装します。各トレーニング反復において、この論文はまずデータセットから SMPL パラメータとカメラパラメータをサンプリングし、ランダムにガウス ノイズ z を生成します。この記事で提案した人体 NeRF を使用すると、サンプリングされたパラメータを偽のサンプルとして 2 次元の人体画像にレンダリングできます。この記事では、データセット内の実際のサンプルを使用して、GAN の敵対的トレーニングを実施します。

2D画像を使って3Dの人体を作成し、好きな服を着たり、動きを変えたりすることができます。

極端に不均衡なデータ セット

DeepFashion などの 2 次元の人体データ セットは、通常、それは 2 次元の視覚タスクのために準備されているため、人体の姿勢の多様性は非常に限られています。不均衡の程度を定量化するために、この論文では、DeepFashion におけるモデルの顔の向きの頻度を数えます。下図に示すように、オレンジ色の線はDeepFashionにおける顔の向きの分布を表しており、非常にアンバランスであり、三次元の人体表現の学習が困難であることがわかります。この問題を軽減するために、以下の図の他の色付きの線で示すように、分布曲線を平坦化するために人間の姿勢に基づいたサンプリング方法を提案します。これにより、モデルはトレーニング中に、人体のより多様で大きな角度の画像を見ることができるため、人体の 3 次元形状の学習に役立ちます。サンプリングパラメータの実験解析を行ったところ、以下の表から分かるように、人間姿勢誘導サンプリング手法を追加すると、画質(FID)は若干低下するものの、学習された三次元形状(Depth)は良好な結果が得られました。大幅に良くなりました。

高品質な生成結果

次の図は、EVA3D の生成結果の一部を示しています. EVA3D は人体の外観をランダムにサンプリングし、レンダリング カメラ パラメーターと人間の姿勢を制御できます。そして体型。

2D画像を使って3Dの人体を作成し、好きな服を着たり、動きを変えたりすることができます。

この論文では、DeepFashion、SHHQ、UBCFashion、および AIST という 4 つの大規模なヒト データ セットに対して実験を実施します。この研究では、最先端の静的 3D オブジェクト生成アルゴリズム EG3D と StyleSDF を比較します。同時に研究者らは、3D 人間生成に特化したアルゴリズム ENARF-GAN も比較しました。この記事では、指標の選択において、レンダリング品質 (FID/KID)、人体制御の精度 (PCK)、およびジオメトリ生成の品質 (Depth) の評価を考慮します。以下の図に示すように、この記事はすべてのデータセットとすべての指標において以前のソリューションを大幅に上回っています。

2D画像を使って3Dの人体を作成し、好きな服を着たり、動きを変えたりすることができます。

#応用可能性

最後に、この記事では EVA3D の応用可能性についてもいくつか示します。まず、この研究では潜在空間における差分をテストしました。以下の図に示すように、この記事では 3 次元の 2 人の人物間のスムーズな切り替えが可能であり、中間結果も高い品質を維持しています。さらに、この記事では、2次元 GAN インバージョンで一般的に使用されるアルゴリズムである Pivotal Tuning Inversion を使用した GAN インバージョンの実験も実施しました。下の右の図に示すように、この方法では再構成されたターゲットの外観をより適切に復元できますが、幾何学的部分の多くの詳細が失われます。 3次元GANの反転は依然として非常に困難な課題であることがわかります。

2D画像を使って3Dの人体を作成し、好きな服を着たり、動きを変えたりすることができます。

#結論

本稿は、初の高精細三次元人体 NeRF 生成アルゴリズム EVA3D を提案する2D人体画像データを使用して学習することができます。 EVA3D は、複数の大規模な人間データセットで最先端のパフォーマンスを実現し、下流タスクへの応用の可能性を示しています。 EVA3D のトレーニング コードとテスト コードはオープンソース化されており、誰でも気軽に試してみることができます。

以上が2D画像を使って3Dの人体を作成し、好きな服を着たり、動きを変えたりすることができます。の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は51CTO.COMで複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
ロボット工学者になる方法は?ロボット工学者になる方法は?Apr 15, 2025 am 09:41 AM

ロボット工学:急速に拡大するフィールドでのやりがいのあるキャリアパス ロボット工学の分野は、爆発的な成長を経験しており、多くのセクターにわたって革新を促進し、日常生活を送っています。 自動製造から医療ロボットや自動運転車まで、

Excelで複製を削除する方法は? - 分析VidhyaExcelで複製を削除する方法は? - 分析VidhyaApr 15, 2025 am 09:20 AM

データの整合性:正確な分析のためにExcelで重複を削除します クリーンデータは、効果的な意思決定には非常に重要です。 Excelスプレッドシートの複製エントリは、エラーや信頼できない分析につながる可能性があります。このガイドは、DUPを簡単に削除する方法を示しています

トップ10の電話インタビューのヒント - 分析Vidhyaトップ10の電話インタビューのヒント - 分析VidhyaApr 15, 2025 am 09:19 AM

電話インタビューの芸術をマスターする:成功へのあなたのガイド 電話インタビューを成功させると、求人プロセスの次の段階に進む可能性が大幅に増加する可能性があります。 この重要な第一印象は、多くの場合唯一のfacです

統計学者になる方法は?統計学者になる方法は?Apr 15, 2025 am 09:15 AM

導入 ヘルスケア、金融、スポーツなどの分野で自分とあなたの会社のために情報に基づいた決定を下す力を持っていることを想像してください。それが統計学者の役割です。 組織でのデータの使用の増加に伴い、統計学者の需要

AIはどのように機能しますか? - 分析VidhyaAIはどのように機能しますか? - 分析VidhyaApr 15, 2025 am 09:14 AM

人工知能:包括的なガイド テクノロジーにより、マシンが私たちの好みを理解し、私たちのニーズを予測し、過去の相互作用から学び、より良い結果を提供する世界を想像することができました。これはサイエンスフィクションではありません。その

Pictogramグラフとは何ですか? - 分析VidhyaPictogramグラフとは何ですか? - 分析VidhyaApr 15, 2025 am 09:09 AM

導入 データ分析の世界では、効果的なコミュニケーションが重要です。 Pictogramグラフは強力なソリューションを提供し、視覚的に魅力的で簡単に消化可能な形式で情報を提示します。複雑なチャートや図、絵文字も異なります

llama-3.1-storm-8b:8b LLMはメタとエルメスを上回るllama-3.1-storm-8b:8b LLMはメタとエルメスを上回るApr 15, 2025 am 09:08 AM

Llama 3.1 Storm 8b:効率的な言語モデルのブレークスルー 効率的で正確な言語モデルの追求により、80億パラメーターモデルカテゴリの大幅な進歩であるLlama 3.1 Storm 8Bの開発が発生しました。 これは洗練されています

Gitのインストール方法は? - 分析VidhyaGitのインストール方法は? - 分析VidhyaApr 15, 2025 am 09:07 AM

Git:バージョン制御とコラボレーションへの本質的なガイド GITは、開発者にとって重要なツールであり、プロジェクトのコラボレーションとバージョン制御を簡素化します。 このガイドは、Linux、MacOS、およびWindにGitをインストールするための簡単な手順を提供します

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン

MantisBT

MantisBT

Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

WebStorm Mac版

WebStorm Mac版

便利なJavaScript開発ツール