医療ビジネスの大きな枠組みにおいて、予測モデルは血液検査、X 線、または MRI と何ら変わらない役割を果たします。これらは介入が適切かどうかの決定に影響を与えます。
「大まかに言えば、モデルは数学的演算を実行し、医師や患者が行動を起こすかどうかを決定するのに役立つ確率推定値を生成します」とスタンフォード ヘルスケアとスタンフォード大学の主任データ サイエンティストは述べています。 HAI教員のニガム・シャー氏はこう語った。しかし、これらの確率推定値は、医療提供者にとって、より有益な決定を引き起こす場合にのみ役立ちます。
「コミュニティとして、私たちはこのモデルが機能するかどうかを問うよりも、モデルのパフォーマンスに夢中になっていると思います。」と Shah 氏は言いました。 「私たちは既成概念にとらわれずに考える必要があります。」
シャー氏のチームは、病院がモデルに基づいて介入を行う能力があるかどうか、またその介入が患者にとって有益であるかどうかを評価する数少ない医療研究グループの 1 つです。患者と医療機関。
「AI 研究者が何も導入せずにモデルをあちこちで構築しているのではないかという懸念が高まっています」と Shah 氏は言います。その理由の 1 つは、モデルによって引き起こされる介入が、利益よりも害をもたらしながら、どのようにコスト効率よく病院運営に統合できるかを示す有用性分析をモデラーが実施していないことです。 ""モデル開発者が時間をかけてこの追加分析を行うことに同意すれば、病院は注意を払うでしょう。
有用性分析のためのツールはオペレーションズリサーチ、医療政策、計量経済学にすでに存在しているが、医療分野のモデル開発者はそれらをなかなか活用していない、とシャー氏は語った。彼自身、チームはこれを変えようとしたモデル作成者が有用性を考慮する必要性を述べた JAMA 論文や、医療における予測モデルの有用性を分析するためのフレームワークを提案した研究論文など、より多くの人にモデルの有用性を評価するよう促す多数の論文を発表することで、精神性を向上させました。
「病院が業務に何を追加するかのように、新しいものと同じように、新しいモデルを導入することには価値があるはずです。」と Shah 氏は言いました。モデルの価値を決定します。今度はモデラーがそれらを使用する時が来ました。
モデル、介入、介入の利益と害の間の相互作用を理解する
上の図に示すように、モデルの有用性は次のとおりです。要因間の相互作用、それが引き起こす介入、そしてその介入の長所と短所について、シャー氏は述べた。患者の再入院のリスクであれ、糖尿病発症のリスクであれ、何でも予測できることを予測するのが得意です。さらに、シャー氏は、それが生み出す予測は人種に関係なくすべての人に平等に適用されることを意味し、公平でなければならないと述べました。民族、国籍、性別、そしてある病院施設から別の病院施設に一般化可能でなければなりません]、または少なくとも地元の病院人口について信頼できる予測を行うことができ、さらに解釈可能である必要があります。 #医療機関は、テストやモデルに基づいて介入する時期と方法に関するポリシーを策定する必要があり、介入の責任者に関する決定も行う必要があり、介入を実行するための能力 (十分なスタッフ、資材、その他のリソース) も備えていなければなりません。 .
シャー氏は、モデルに応じて特定の方法で介入するかどうか、あるいはどのように介入するかについて政策を策定することが健康の公平性に影響を与えると述べ、公平性に関して「研究者は、モデルが平等であるかどうかに焦点を当てることにあまりにも多くの時間を費やしている」と述べた。そして、私たちが対処しようとしている不公平のほとんどは後者から生じているにもかかわらず、その介入がすべての人に平等に利益をもたらすかどうかに焦点を当てるのに十分な時間が費やされていません。 ''たとえば、どの患者が予約に来ないかを予測すること自体は、その予測がすべての人種および民族グループに対して同等に正確であれば不公平ではないかもしれませんが、介入方法の選択 (予約が重複するかどうか)
第三に、介入による利益は害を上回り、シャー氏は述べた。介入はプラスの結果とマイナスの結果の両方をもたらす可能性があるため、モデル予測の有用性は、それが引き起こす介入の長所と短所によって決まります。 この相互作用を理解するには、一般的に使用されている予測モデルであるアテローム性動脈硬化性心血管疾患 (ASCVD) リスク方程式を考慮してください。これは、年齢、性別、人種、総コレステロール、LDL/HDL コレステロール、血圧、喫煙歴、糖尿病の状態、降圧薬の使用など)を考慮して、患者の 10 年間の心臓発作または脳卒中のリスクを計算します。 ASCVD リスク方程式の有用性を具体的に分析すると、上図の 3 つの部分が考慮され、それが有用であることが分かるだろうとシャー氏は述べた。 まず、このモデルは心臓病を高度に予測するものであると広く考えられており、公平で一般化可能で解釈可能でもあります。第二に、ほとんどの医療機関は、スタチンを処方する際のリスクレベルに関する標準的な方針に従って介入しており、スタチンは広く入手可能であるため、介入する十分な能力を備えています。最後に、スタチン使用の害と利益の分析では、一部の患者は副作用に耐えられないものの、ほとんどの人はスタチンから利益を得ていることが示唆されています。 上記の ASCVD の例は、例示的なものではありますが、おそらく最も単純な予測モデルの 1 つです。しかし、予測モデルは、より複雑な方法で医療ワークフローを混乱させる介入を引き起こす可能性があり、一部の介入の利点と害はそれほど明確ではない可能性があります。 この問題に対処するために、Shah 氏らは、予測モデルが実際に役立つかどうかをテストするフレームワークを開発しました。彼らは、アドバンス・ケア・プラン(ACP)と呼ばれる介入を引き起こすモデルを使用してフレームワークを実証しました。 ACP は通常、人生の終わりに近づいている患者に提供され、起こり得る将来のシナリオと、もし身体が不自由になった場合の患者の希望についてオープンかつ正直に話し合います。こうした会話は、患者に自分の人生をコントロールしているという感覚を与えるだけでなく、医療費を削減し、医師の士気を向上させ、場合によっては患者の生存率を向上させることさえあります。 スタンフォード大学のシャー氏のチームは、今後 12 か月以内にどの入院患者が死亡する可能性が高いかを予測できるモデルを開発しました。私たちの目標は、ACP の恩恵を受ける可能性のある患者を特定することです。モデルが死亡率を適切に予測し、公正で解釈可能で信頼できるものであることを確認した後、チームはモデルによって引き起こされる介入が有用かどうかを判断するためにさらに 2 つの分析を実施しました。 1 つ目は費用便益分析で、介入が成功した場合 (利益が得られる可能性が高いとモデルによって正しく特定された患者に ACP を提供した場合)、約 8,400 ドルを節約できる一方、そうでなかった患者には介入を提供できることがわかりました。 ACP が必要な場合 (つまり、モデルエラー)、約 3,300 ドルの費用がかかります。 「この場合、非常に大まかに言えば、たとえ3番目の権利しか得られなかったとしても、損益分岐点になるでしょう」とシャー氏は語った。 しかし、分析はそこで終わりませんでした。 「約束された 8,400 ドルを節約するには、実際には、たとえば 48 時間で 21 ステップ、3 人、7 回の引き継ぎを伴うワークフローを実装する必要がありました」と Shah 氏は言います。 「では、実際にそんなことはできるのでしょうか?」 この質問に答えるために、チームは 500 日間の入院期間にわたる介入をシミュレーションし、限られたスタッフや時間の不足などのケア提供要因を評価しました。 (患者の退院により)介入の利益が影響を受ける可能性があります。彼らはまた、外来患者ベースで ACP を提供する場合と比較して、入院患者の人員配置を増やすことの相対的な利点を定量化しました。結果: 外来治療の選択肢があることで、より期待される利益が確実に実現されます。 「75%の有効性を得るために、退院患者の半数を追跡調査するだけで済みました。これはかなり良好です」とシャー氏は語った。 この研究は、たとえ非常に優れたモデルと非常に優れた介入を持っていたとしても、そのモデルが役立つのは介入を実行する能力も持っている場合に限られる、とシャー氏は言いました。今になってみればこの結果は直観的に見えるかもしれないが、当時はそうではなかったとシャー氏は語った。 「この研究が完了していなかったら、たとえ費用対効果があまり高くなかったとしても、スタンフォード病院は ACP を提供するために入院患者の収容能力を拡大していたかもしれません。」 シャー氏のチームは、モデル、介入、および介入を分析していました。賛否両論の相互作用のフレームワークは、実際に役立つ予測モデルを特定するのに役立ちます。 「少なくとも、モデル作成者は何らかの分析を実施して、モデルが有用な介入を示唆しているかどうかを判断する必要がある」とシャー氏は述べた。 「これが始まりです。」モデル有用性分析の例: Advanced Care Planning
以上がヘルスケア AI が確実に役立つようにするにはどうすればよいでしょうか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

人工智能已经在改进医疗保健方法,并且有潜力做得更多。在任何行业的每一次剧烈变革背后,总有灾难性的全球危机的影响。不过,与其他行业不同的是,在COVID-19席卷全球之前,医疗保健行业在采用人工智能创新方面一直进展缓慢。与其他行业相比,这一事件使医疗保健行业面临着巨大的挑战,从而推动了医疗保健应用开发计划的发展。其中,人工智能是重点,现在仍然如此!事实上,根据priorResearch的数据,到2030年,全球人工智能医疗市场规模预计将超过1879.5亿美元的汇率,在2022-2030年的预测期内

基于风险的方法建议提供商在高风险领域投入更多精力,而在低风险领域投入较少精力。同时,企业的内部审计和合规投资应与面临的关键风险保持一致,以最大化风险回报。五大风险领域医疗保健组织面临着五个最高的风险领域,内部审计和合规领导人在规划2024年时应对这些领域进行评估,并确保将其纳入考虑范围内。AI和新技术竞争网络安全和数据隐私财务业绩劳动力风险领域是指可能妨碍医疗保健组织在关键领域达成目标的能力。这些领域包括患者护理、合规、运营、战略增长和财务业绩。各个风险领域都严重破坏了医疗保健提供商组织的核心能

以下是五个最佳示例,展示了人工智能在我们日常生活中的准确应用人工智能(AI)已经从一个未来概念迅速发展成为推动各行各业创新的巨大力量。这项技术曾经只存在于科幻小说中,但现在已经渗透到我们的日常生活中,改变了我们的工作方式、交流方式,甚至是医疗保健方式。本文将详细探讨五个显著的实际应用案例,展示了人工智能的真实价值以下是一些展示人工智能在我们日常生活中应用的例子自动驾驶和停车车辆通过应用人工智能(AI)技术,汽车行业正在经历彻底的改变,使得自动驾驶汽车能够独立行驶。通过处理传感器、摄像头和激光雷达

虽然其蕴藏的能量巨大,但我们仍须认真分析最佳应用场景才能为其找到理想的施展平台。医疗保健尤其如此——作为一个向来以变化缓慢著称的领域,任何新兴技术的草率部署都有可能引发巨大风险。大家可能还记得前几年广受关注的IBM Watson,曾经号称能诊断复杂的癌症,但实际情况并非如此。最终,蓝色巨人在去年将其低价卖出。所以在医疗保健方面,我们不妨以一种简单的五步走方法,评估生成式AI能够为其做出哪些贡献:1. 从技术能够协助解决的问题入手,搞清楚生成式AI擅长做什么。2. 搜索存在这些问题的整体领域。3.

中小企业相比于大企业可能不会有太强大的技术支持以及强大的资金支持,缺乏技术人员、缺乏高质量数据、应用场景不明确、投资成本高……这都是中小企业数字化转型的难点。特别是中小企业本就缺资金,难以承担研发成本或技术定制成本。那么AI该如何去赋能中小企业呢?笔者认为,人工智能技术将通过产业升级、管理变革、流程再造、环境优化四条路径加速中小企业数字化转型进程。路径一人工智能改变商业惯例,推动相关行业创新人工智能技术能够带动产业结构升级换代,催生新业务、新模式和新技术,改变企业的商业惯例,助力零售、运输、旅游

随着人工智能技术变得越来越强大,人工智能使人们能够将更多时间花在最重要的人身和事上。AI 正在将人们聚集在一起,无论是协助计划家庭度假、安全到达某个地方、让每个人都能在视频通话中看到对方,还是让购买变得更容易。人工智能的不断发展有可能彻底改变我们的生活、工作和互动方式 。虽然人工智能经常被描绘成一种可能导致失业和社会不平等的分裂力量,但它也有能力将人们更加精密地聚集在一起,并为协作与合作创造新的机会。在本文中,我们将探讨人工智能可以用来弥合社会、文化和语言障碍的一些方式,并促进不同社区之间更好的

多年来,自动化几乎渗透到各个行业。自动化通常与工厂机器加速装配线产出联系在一起。但自那时以来,自动化已经走了很长一段路。医疗保健自动化正在改变该行业,同时挽救生命。在许多医疗保健设置中,采用自动化方法来保证更好的患者结果和更好的患者体验。医疗保健技术提高了治疗的一致性和质量,减少了不准确性和人为错误,并通过数据驱动的见解提高了创造力。预约取消,对任何医疗保健专业人员而言都是一种负担。以前,给患者打电话提醒预约的时间有助于确保其记住预约,或取消预约。缺乏接触患者的时间、患者的最新信息和有效的沟通方

机器学习领域中,有些模型非常有效,但我们并不能完全确定其原因。相反,一些相对容易理解的研究领域则在实践中适用性有限。本文基于机器学习的效用和理论理解,探讨各个子领域的进展。这里的实验效用是一种综合考量,它考虑了一种方法的适用性广度、实施的难易程度,以及最重要的因素,即现实世界中的有用程度。有些方法不仅实用性高,适用范围也很广;而有些方法虽然很强大,但仅限于特定的领域。可靠、可预测且没有重大缺陷的方法则被认为具有更高的效用。所谓理论理解,就是要考虑模型方法的可解释性,即输入与输出之间是什么关系,怎


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

ドリームウィーバー CS6
ビジュアル Web 開発ツール

WebStorm Mac版
便利なJavaScript開発ツール

ホットトピック



