arXiv 論文「ST-P3: 時空間特徴学習によるエンドツーエンドのビジョンベースの自動運転」、7 月 22 日、上海交通大学、上海 AI 研究所、カリフォルニア大学サンディエゴ校、JD の著者。 com 北京研究所。
ST-P3 と呼ばれる、知覚、予測、計画タスクのためのより代表的な特徴のセットを同時に提供できる時空間特徴学習スキームを提案します。具体的には、BEV 変換を感知する前に 3 次元空間に幾何学的情報を保持する自己中心的調整累積手法が提案されており、著者は、将来の予測のために過去の動きの変化が考慮されるように二重経路モデルを設計しています。計画された視覚要素の認識を補うために、洗練ユニットが導入されました。ソース コード、モデル、プロトコルの詳細はオープン ソースhttps://github.com/OpenPerceptionX/ST-P3.
先駆的な LSS 手法は、マルチビュー カメラから遠近感特徴を抽出し、深さ推定を通じてそれらを 3D に引き上げ、BEV 空間に融合します。 2 つのビュー間の特徴変換。潜在深度予測が重要です。
2 次元の平面情報を 3 次元にアップグレードするには、追加の次元、つまり 3 次元の幾何学的自動運転タスクに適した深さが必要です。ほとんどのシーンにはビデオ ソースが割り当てられているため、特徴表現をさらに改善するには、時間情報をフレームワークに組み込むのが自然です。
図で説明されているST- P3全体的なフレームワーク: 具体的には、周囲のカメラ ビデオのセットが与えられると、それらをバックボーンに入力して、予備的な正面図の特徴を生成します。補助的な深度推定を実行して、2D フィーチャを 3D 空間に変換します。自己中心位置合わせ累積スキームは、まず過去のフィーチャを現在のビュー座標系に位置合わせします。その後、現在および過去のフィーチャが 3 次元空間に集約され、BEV 表現に変換する前に幾何学的情報が保存されます。一般的に使用される prediction 時間領域モデルに加えて、過去の動きの変化を説明する 2 番目のパスを構築することで、パフォーマンスがさらに向上します。このデュアルパス モデリングにより、将来のセマンティックな結果を推測するためのより強力な特徴表現が保証されます。軌道 計画 という最終目標を達成するために、ネットワークの初期機能の事前知識が統合されます。改良モジュールは、HD マップがない場合でも高レベルのコマンドを使用して最終的な軌道を生成するように設計されました。
図は、知覚の自己中心的調整蓄積法を示しています。 (a) 深度推定を利用して現在のタイムスタンプの特徴を 3D に引き上げ、位置合わせ後に BEV 特徴にマージします; (b-c) 前のフレームの 3D 特徴を現在のフレーム ビューと位置合わせし、過去および現在のすべての状態と融合します。特徴表現を強化します。
図に示されているのは、prediction に使用される 2 方向モデルです。 (i) 潜在コードは特徴マップからの分布です。 (ii iii) ロード a には、将来のマルチモダリティを示す不確実性分布が組み込まれていますが、パス b は過去の変化から学習し、パス a の情報を補うのに役立ちます。
#最終的な目標として、目標点に到達するための安全で快適な軌道を計画する必要があります。このモーション プランナーは、さまざまな軌道のセットをサンプリングし、学習されたコスト関数を最小化する軌道を選択します。ただし、ターゲット ポイントや信号機からの情報をタイム ドメイン モデルを通じて統合すると、追加の最適化手順が追加されます。
この図は、計画のための事前知識の統合と改良を示しています。全体のコスト図には 2 つのサブコストが含まれています。カメラ入力からのビジョンベースの情報を集約する将来予測機能を使用して、最小コストの軌道がさらに再定義されます。
大きな横加速度、ジャーク、または曲率を伴う軌道にペナルティを与えます。この軌道が効率的に目的地に到達し、前進が報われることを願っています。ただし、上記のコスト項目には、通常ルートマップで提供されるターゲット情報は含まれません。前進、左折、右折などの高レベルのコマンドを使用し、対応するコマンドのみに基づいて軌道を評価します。
さらに、SDV にとって信号機は、GRU ネットワークを通じて軌道を最適化するために不可欠です。隠れ状態はエンコーダ モジュールのフロント カメラ機能で初期化され、コスト項の各サンプル ポイントが入力として使用されます。
実験結果は次のとおりです:
#
以上がST-P3: 自動運転のためのエンドツーエンドの時空間特徴学習ビジョン手法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

对于下一代集中式电子电器架构而言,采用central+zonal 中央计算单元与区域控制器布局已经成为各主机厂或者tier1玩家的必争选项,关于中央计算单元的架构方式,有三种方式:分离SOC、硬件隔离、软件虚拟化。集中式中央计算单元将整合自动驾驶,智能座舱和车辆控制三大域的核心业务功能,标准化的区域控制器主要有三个职责:电力分配、数据服务、区域网关。因此,中央计算单元将会集成一个高吞吐量的以太网交换机。随着整车集成化的程度越来越高,越来越多ECU的功能将会慢慢的被吸收到区域控制器当中。而平台化

新视角图像生成(NVS)是计算机视觉的一个应用领域,在1998年SuperBowl的比赛,CMU的RI曾展示过给定多摄像头立体视觉(MVS)的NVS,当时这个技术曾转让给美国一家体育电视台,但最终没有商业化;英国BBC广播公司为此做过研发投入,但是没有真正产品化。在基于图像渲染(IBR)领域,NVS应用有一个分支,即基于深度图像的渲染(DBIR)。另外,在2010年曾很火的3D TV,也是需要从单目视频中得到双目立体,但是由于技术的不成熟,最终没有流行起来。当时基于机器学习的方法已经开始研究,比

我们经常可以看到蜜蜂、蚂蚁等各种动物忙碌地筑巢。经过自然选择,它们的工作效率高到叹为观止这些动物的分工合作能力已经「传给」了无人机,来自英国帝国理工学院的一项研究向我们展示了未来的方向,就像这样:无人机 3D 打灰:本周三,这一研究成果登上了《自然》封面。论文地址:https://www.nature.com/articles/s41586-022-04988-4为了展示无人机的能力,研究人员使用泡沫和一种特殊的轻质水泥材料,建造了高度从 0.18 米到 2.05 米不等的结构。与预想的原始蓝图

与人类行走一样,自动驾驶汽车想要完成出行过程也需要有独立思考,可以对交通环境进行判断、决策的能力。随着高级辅助驾驶系统技术的提升,驾驶员驾驶汽车的安全性不断提高,驾驶员参与驾驶决策的程度也逐渐降低,自动驾驶离我们越来越近。自动驾驶汽车又称为无人驾驶车,其本质就是高智能机器人,可以仅需要驾驶员辅助或完全不需要驾驶员操作即可完成出行行为的高智能机器人。自动驾驶主要通过感知层、决策层及执行层来实现,作为自动化载具,自动驾驶汽车可以通过加装的雷达(毫米波雷达、激光雷达)、车载摄像头、全球导航卫星系统(G

实时全局光照(Real-time GI)一直是计算机图形学的圣杯。多年来,业界也提出多种方法来解决这个问题。常用的方法包通过利用某些假设来约束问题域,比如静态几何,粗糙的场景表示或者追踪粗糙探针,以及在两者之间插值照明。在虚幻引擎中,全局光照和反射系统Lumen这一技术便是由Krzysztof Narkowicz和Daniel Wright一起创立的。目标是构建一个与前人不同的方案,能够实现统一照明,以及类似烘烤一样的照明质量。近期,在SIGGRAPH 2022上,Krzysztof Narko

由于智能汽车集中化趋势,导致在网络连接上已经由传统的低带宽Can网络升级转换到高带宽以太网网络为主的升级过程。为了提升车辆升级能力,基于为车主提供持续且优质的体验和服务,需要在现有系统基础(由原始只对车机上传统的 ECU 进行升级,转换到实现以太网增量升级的过程)之上开发一套可兼容现有 OTA 系统的全新 OTA 服务系统,实现对整车软件、固件、服务的 OTA 升级能力,从而最终提升用户的使用体验和服务体验。软件升级触及的两大领域-FOTA/SOTA整车软件升级是通过OTA技术,是对车载娱乐、导

internet的基本结构与技术起源于ARPANET。ARPANET是计算机网络技术发展中的一个里程碑,它的研究成果对促进网络技术的发展起到了重要的作用,并未internet的形成奠定了基础。arpanet(阿帕网)为美国国防部高级研究计划署开发的世界上第一个运营的封包交换网络,它是全球互联网的始祖。

arXiv综述论文“Collaborative Perception for Autonomous Driving: Current Status and Future Trend“,2022年8月23日,上海交大。感知是自主驾驶系统的关键模块之一,然而单车的有限能力造成感知性能提高的瓶颈。为了突破单个感知的限制,提出协同感知,使车辆能够共享信息,感知视线之外和视野以外的环境。本文回顾了很有前途的协同感知技术相关工作,包括基本概念、协同模式以及关键要素和应用。最后,讨论该研究领域的开放挑战和问题


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン
