検索
ホームページテクノロジー周辺機器AI合成データは人工知能を向上させることができるでしょうか?

人工知能 (AI) は指数関数的な進歩によりさらに高度になってきましたが、この最新テクノロジーの限界は依然として存在します。

では、合成データは人工知能に関連するすべての問題を解決できるのでしょうか?

第 4 次産業革命では、あらゆる業界が人工知能 (AI) や機械学習 (ML) などの最新テクノロジーの可能性を発見しました。

他のほぼすべての組織は、より効率的なビジネス プロセスを作成し、より高い顧客満足度を確保するために AI を導入しています。しかし、スタートアップ企業、SOHO、中小企業 (SMB) は、AI を導入する際に、コールド スタート問題として知られる大きな問題に直面します。一般にスタートアップや中小企業にはビッグデータを収集するリソースがありませんが、コールドスタートの問題は本質的にそのような関連データの欠如にあります。

一方、業界大手はすでに実世界のデータを収集し、それを自社の AI システムのトレーニングに適用するためのリソースを持っています。したがって、中小企業が勝つ可能性は非常に高いです。この場合、合成データが必要な実現要因となる可能性があります。

合成データは、データ駆動型のビジネス モデルの推進力となる可能性があります。さらに、合成データは実際のデータと同じ結果を生み出すことが研究で示されています。合成データは、実際のデータよりも安価で、処理にかかる時間が短いと考えられています。したがって、合成データの出現により、現在大企業が独占している競争条件が平準化され、中小企業や新興企業に有利になる可能性があります。

合成データの利点を発見する

合成データは、データが実際の過去のデータに可能な限り近いことを保証するために、ユーザー指定のパラメーターに基づいてコンピューターで生成された人工データです。通常、Unreal Engine や Unity などのゲーム エンジンは、自動運転車などの AI ベースのアプリケーションをテストおよびトレーニングするためのシミュレーション環境としてよく使用されます。合成データに基づいて AI 駆動のアプリケーションを開発することには多くの利点があります。

合成データは人工知能を向上させることができるでしょうか?

#1. プロトタイプの開発関連する大量の実世界データの検索、集約、モデリングは、面倒なプロセスです。したがって、合成データを生成することが最良の解決策である可能性があります。このようなデータにより、プロトタイプを構築し、量産前にそのようなプロトタイプをテストして望ましい結果を得ることができます。合成データを使用してプロトタイプを構築することは、実際のデータよりも効率的でコスト効率が高くなります。

Open AI は非営利の人工知能研究会社であり、人工知能ベースのアプリケーションを多数開発しています。これらのアプリケーションの中で、研究者らは、一度実行されたアクションを見た後に新しいタスクを学習できる合成データで訓練されたロボットを開発しました。カリフォルニアのテクノロジー系スタートアップ企業は、Amazon Go と同様のビジョンを持った人工知能プラットフォームを開発しています。このスタートアップは、合成データを活用して、コンビニエンス ストアや小売店にチェックアウト不要のソリューションを提供することを目指しています。また、店舗内のすべての買い物客を監視して学習パターンを特定して分析する、AI を活用したスマート システムも導入しました。

2. データプライバシーの確保

2018 年 11 月、5 億人のマリオット顧客が注目を集めたデータ侵害の影響を受けました。この5億人のうち、3億2,700万人がパスポート情報、電子メールアドレス、郵送先住所、クレジットカード情報などのデータを盗まれた。このような事件により、人々は自分のデータのセキュリティとプライバシーについて懸念しています。

合成データは、このようなプライバシー問題を効果的に解決できます。合成データには個人データは含まれません。したがって、データのプライバシーを容易に確保できます。合成データは、ヘルスケア アプリケーションの AI システムをトレーニングする際に非常に役立ちます。 AI システムには多くの場合、実際の患者データが必要です。これは患者のプライバシーを脅かします。合成データを使用すると、患者の機密性を維持しながら、医療における高度な人工知能アプリケーションの開発が可能になります。

たとえば、Nvidia の研究者は、ミネソタ州のメイヨー クリニックおよびボストンの MGH および BWH 臨床データ サイエンス センターと協力して、敵対的生成ネットワークを使用して、ニューラル ネットワークをトレーニングするための合成データを生成しています。生成された合成データには、アルツハイマー病ニューロイメージング イニシアチブ データセットからの 3,400 個の MRI と、マルチモーダル脳腫瘍画像セグメンテーション ベンチマーク データセットからの 200 個の 4D 脳 MRI および腫瘍が含まれています。同様に、シミュレートされた X 線を実際の X 線と並行して使用して、複数の健康状態を認識するように AI システムをトレーニングすることができます。

3. 前例のないシナリオのテストとトレーニング

AI 駆動型アプリケーションの開発における最も重要なプロセスの 1 つは、システム パフォーマンスのテストです。システムが望ましい出力を生成していない場合は、再トレーニングする必要があります。この場合、合成データが有益であることがわかります。実際のデータを使用したり、実際の環境でシステムをテストしたりする代わりに、合成データを使用して AI システムをテストするシナリオを生成できます。この方法は、実際のデータを取得するよりも安価で時間もかかりません。

同様に、合成データは、実際のデータやイベントが欠如している将来発生する可能性のあるシナリオに備えて、新規または既存のシステムをトレーニングすることもできます。このアプローチにより、研究者はより未来的な AI アプリケーションを開発できます。さらに、合成データを使用した AI システムの再トレーニングは、正確な実世界のデータを収集するよりも合成データの生成が簡単であるため、より簡単です。

これらの利点により、合成データは自動運転車のテストとトレーニングに利用できる代替手段となっています。多くの自動運転車開発者は、GTA V のようなシミュレートされたゲーム環境を使用して、AI ベースのシステムをトレーニングしています。同様に、May Mobility は、合成データを使用して車両をトレーニングすることで、自動運転マイクロモビリティ サービスを構築しています。

Waymo という別の自動運転車開発会社は、すでに模擬道路で 50 億マイル、実際の道路でさらに 800 万マイルを走行して自動運転車をテストしました。合成データのアプローチにより、開発者は模擬道路で自動運転車をテストできるため、実際の道路で直接テストするよりもはるかに安全です。

4. データの柔軟性の向上

実際のデータの取得は、アノテーションの料金を支払い、著作権侵害を確実に回避する必要がある、面倒なプロセスです。さらに、実際のデータは、特定のドメインに十分な履歴データがある特定のシナリオでのみ使用できます。実際のデータとは異なり、合成データは、オブジェクト、シーン、イベント、人物のあらゆる組み合わせを瞬時に表現できます。合成データは、ニッチなアプリケーションを発見できる一般的なデータセットを生成できます。その結果、研究者は合成データを使用して無限の可能性を探ることができます。いくつかの新興企業は、顧客の要件を満たすトレーニング データ セットを開発することで、オープン データ エコノミーを構築しています。

5. 合成データの限界を探る

合成データは AI が未発見の領域に到達するのに役立ちますが、その限界が主流の展開にとって大きな障害となる可能性があります。まず、合成データは現実世界のデータのいくつかのプロパティをシミュレートしますが、元のデータを正確に複製するわけではありません。このような合成データをモデル化する場合、AI システムは実際のデータの共通の傾向と状況のみを検索します。したがって、現実世界のデータのまれなケースに含まれるまれなシナリオは、合成データには決して含まれない可能性があります。

さらに、研究者はデータが正確かどうかを確認するメカニズムをまだ開発していません。実際のデータの欠陥を見つけてそれらを減らすことは、合成データを使用するよりも簡単です。 AI 駆動のシステムには、意図しないバイアスを促進する「ダークサイド」がすでに存在します。合成データを使用して、このバイアスの範囲と影響を予測するのは時期尚早である可能性があります。

6. 課題の克服

組織は、合成データがかなり新しい発見であることを理解する必要があります。このようなデータの効率と正確性は、現在の業界標準に照らして評価されていません。したがって、合成データをスタンドアロン データ ソースと見なすべきではありません。特にヘルスケア アプリケーションや自動運転車など、安全性の懸念に直面しているアプリケーションでは、合成データを現実世界のデータと組み合わせて AI システムを開発する必要があります。しかし、小売業のアプリケーションはリスク要因が低く、合成データに簡単に依存できます。

テスト目的の場合、合成データは実行可能で安価なソリューションです。ただし、他の目的では、合成データをスタンドアロン ソリューションとして使用する前に、AI システムの結果を徹底的に調査および分析する必要があります。研究が進めば、さまざまな操作において合成データの信頼性が高まる可能性があります。

以上が合成データは人工知能を向上させることができるでしょうか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は51CTO.COMで複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
2023年机器学习的十大概念和技术2023年机器学习的十大概念和技术Apr 04, 2023 pm 12:30 PM

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

人工智能自动获取知识和技能,实现自我完善的过程是什么人工智能自动获取知识和技能,实现自我完善的过程是什么Aug 24, 2022 am 11:57 AM

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

得益于OpenAI技术,微软必应的搜索流量超过谷歌得益于OpenAI技术,微软必应的搜索流量超过谷歌Mar 31, 2023 pm 10:38 PM

截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。 3月23日消息,外媒报道称,分析公司Similarweb的数据显示,在整合了OpenAI的技术后,微软旗下的必应在页面访问量方面实现了更多的增长。​​​​截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。这些数据是微软在与谷歌争夺生

超参数优化比较之网格搜索、随机搜索和贝叶斯优化超参数优化比较之网格搜索、随机搜索和贝叶斯优化Apr 04, 2023 pm 12:05 PM

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠​审校 | 孙淑娟​简介​通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。​顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

荣耀的人工智能助手叫什么名字荣耀的人工智能助手叫什么名字Sep 06, 2022 pm 03:31 PM

荣耀的人工智能助手叫“YOYO”,也即悠悠;YOYO除了能够实现语音操控等基本功能之外,还拥有智慧视觉、智慧识屏、情景智能、智慧搜索等功能,可以在系统设置页面中的智慧助手里进行相关的设置。

人工智能在教育领域的应用主要有哪些人工智能在教育领域的应用主要有哪些Dec 14, 2020 pm 05:08 PM

人工智能在教育领域的应用主要有个性化学习、虚拟导师、教育机器人和场景式教育。人工智能在教育领域的应用目前还处于早期探索阶段,但是潜力却是巨大的。

30行Python代码就可以调用ChatGPT API总结论文的主要内容30行Python代码就可以调用ChatGPT API总结论文的主要内容Apr 04, 2023 pm 12:05 PM

阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。 阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。使用 Python 和 C

人工智能在生活中的应用有哪些人工智能在生活中的应用有哪些Jul 20, 2022 pm 04:47 PM

人工智能在生活中的应用有:1、虚拟个人助理,使用者可通过声控、文字输入的方式,来完成一些日常生活的小事;2、语音评测,利用云计算技术,将自动口语评测服务放在云端,并开放API接口供客户远程使用;3、无人汽车,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目标;4、天气预测,通过手机GPRS系统,定位到用户所处的位置,在利用算法,对覆盖全国的雷达图进行数据分析并预测。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

PhpStorm Mac バージョン

PhpStorm Mac バージョン

最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境