この記事では、LazyPredict を使用して単純な ML モデルを作成する方法について説明します。 LazyPredictによる機械学習モデルの作成の特徴は、大量のコードを必要とせず、パラメータを変更することなく複数モデルのフィッティングを実行し、多数のモデルの中から最もパフォーマンスの高いモデルを選択できることです。 ############まとめ#########
この記事では、LazyPredict を使用して単純な ML モデルを作成する方法について説明します。 LazyPredictによる機械学習モデルの作成の特徴は、多くのコードを必要とせず、パラメータを変更することなく複数モデルのフィッティングを実行し、多数のモデルの中から最もパフォーマンスの高いモデルを選択できることです。
この記事には次の内容が含まれています。
- はじめに
- LazyPredict モジュールのインストール
- 分類モデル 回帰モデルへの LazyPredict の実装 機械学習モデルの開発方法に革命をもたらします。 LazyPredict を使用すると、コーディングをほとんど行わずにさまざまな基本モデルを迅速に作成できるため、データに最適なモデルを選択する時間が解放されます。
- LazyPredict の主な利点は、モデルの大規模なパラメーター調整を必要とせずに、モデルの選択を容易にできることです。 LazyPredict は、最適なモデルを見つけてデータに適合させるための高速かつ効率的な方法を提供します。
- 次に、この記事を通じて LazyPredict の使用法について詳しく見ていきましょう。
!pip install lazypredict分類モデルでの LazyPredict の実装この例では、Sklearn パッケージの乳がんデータセットを利用します。 それでは、データをロードしてみましょう。
from sklearn.datasets import load_breast_cancer
from lazypredict.Supervised import LazyClassifier
data = load_breast_cancer()
X = data.data
y= data.target
最適な分類子モデルを選択するために、「LazyClassifier」アルゴリズムをデプロイしましょう。これらの特性と入力パラメータはこのクラスに適しています。
LazyClassifier( verbose=0, ignore_warnings=True, custom_metric=None, predictions=False, random_state=42, classifiers='all', )次に、ロードされたデータにモデルを適用して適合させます。
from lazypredict.Supervised import LazyClassifier
from sklearn.model_selection import train_test_split
# split the data
X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.3,random_state =0)
# build the lazyclassifier
clf = LazyClassifier(verbose=0,ignore_warnings=True, custom_metric=None)
# fit it
models, predictions = clf.fit(X_train, X_test, y_train, y_test)
# print the best models
print(models)
上記のコードを実行すると、次の結果が得られます:
model_dictionary = clf.provide_models(X_train,X_test,y_train,y_test)

model_dictionary['LGBMClassifier']
ここでは、SimpleImputer がデータセット全体に使用され、次に StandardScaler が数値特徴に使用されていることがわかります。このデータセットにはカテゴリ特徴や順序特徴はありませんが、存在する場合は、OneHotEncoder と OrdinalEncoder がそれぞれ使用されます。 LGBMClassifier モデルは、変換と分類後にデータを受け取ります。
LazyClassifier の内部機械学習モデルは、評価とフィッティングに sci-kit-learn ツールボックスを使用します。 LazyClassifier 関数が呼び出されると、デシジョン ツリー、ランダム フォレスト、サポート ベクター マシンなどを含むさまざまなモデルが自動的に構築され、データに適合します。精度、再現率、F1 スコアなど、指定した一連のパフォーマンス指標は、これらのモデルを評価するために使用されます。トレーニング セットはフィッティングに使用され、テスト セットは評価に使用されます。
モデルを評価してフィッティングした後、LazyClassifier は評価結果の概要 (上の表を参照) と、上位モデルのリストおよび各モデルのパフォーマンス指標を提供します。モデルを手動で調整したり選択したりする必要がないため、多くのモデルのパフォーマンスを迅速かつ簡単に評価し、データに最適なモデルを選択できます。
「LazyRegressor」関数を使用して、回帰モデルに対して同じ作業を再度実行できます。回帰タスクに適したデータセットをインポートしましょう (ボストン データセットを使用)。
ここで、LazyRegressor を使用してデータを当てはめてみましょう。
from lazypredict.Supervised import LazyRegressor from sklearn import datasets from sklearn.utils import shuffle import numpy as np # load the data boston = datasets.load_boston() X, y = shuffle(boston.data, boston.target, random_state=0) X = X.astype(np.float32) # split the data X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.3,random_state =0) # fit the lazy object reg = LazyRegressor(verbose=0, ignore_warnings=False, custom_metric=None) models, predictions = reg.fit(X_train, X_test, y_train, y_test) # print the results in a table print(models)
コードの実行結果は次のとおりです:
以下是对最佳回归模型的详细描述:
model_dictionary = reg.provide_models(X_train,X_test,y_train,y_test) model_dictionary['ExtraTreesRegressor']
这里可以看到SimpleImputer被用于整个数据集,然后是StandardScaler用于数字特征。这个数据集中没有分类或序数特征,但如果有的话,会分别使用OneHotEncoder和OrdinalEncoder。ExtraTreesRegressor模型接收了转换和归类后的数据。
结论
LazyPredict库对于任何从事机器学习行业的人来说都是一种有用的资源。LazyPredict通过自动创建和评估模型的过程来节省选择模型的时间和精力,这大大提高了模型选择过程的有效性。LazyPredict提供了一种快速而简单的方法来比较几个模型的有效性,并确定哪个模型系列最适合我们的数据和问题,因为它能够同时拟合和评估众多模型。
阅读本文之后希望你现在对LazyPredict库有了直观的了解,这些概念将帮助你建立一些真正有价值的项目。
译者介绍
崔皓,51CTO社区编辑,资深架构师,拥有18年的软件开发和架构经验,10年分布式架构经验。
原文标题:LazyPredict: A Utilitarian Python Library to Shortlist the Best ML Models for a Given Use Case,作者:Sanjay Kumar
以上がLazyPredict: 最適な ML モデルを選択してください。の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

译者 | 布加迪审校 | 孙淑娟目前,没有用于构建和管理机器学习(ML)应用程序的标准实践。机器学习项目组织得不好,缺乏可重复性,而且从长远来看容易彻底失败。因此,我们需要一套流程来帮助自己在整个机器学习生命周期中保持质量、可持续性、稳健性和成本管理。图1. 机器学习开发生命周期流程使用质量保证方法开发机器学习应用程序的跨行业标准流程(CRISP-ML(Q))是CRISP-DM的升级版,以确保机器学习产品的质量。CRISP-ML(Q)有六个单独的阶段:1. 业务和数据理解2. 数据准备3. 模型

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

译者 | 朱先忠审校 | 孙淑娟在我之前的博客中,我们已经了解了如何使用因果树来评估政策的异质处理效应。如果你还没有阅读过,我建议你在阅读本文前先读一遍,因为我们在本文中认为你已经了解了此文中的部分与本文相关的内容。为什么是异质处理效应(HTE:heterogenous treatment effects)呢?首先,对异质处理效应的估计允许我们根据它们的预期结果(疾病、公司收入、客户满意度等)选择提供处理(药物、广告、产品等)的用户(患者、用户、客户等)。换句话说,估计HTE有助于我

近年来,基于深度学习的模型在目标检测和图像识别等任务中表现出色。像ImageNet这样具有挑战性的图像分类数据集,包含1000种不同的对象分类,现在一些模型已经超过了人类水平上。但是这些模型依赖于监督训练流程,标记训练数据的可用性对它们有重大影响,并且模型能够检测到的类别也仅限于它们接受训练的类。由于在训练过程中没有足够的标记图像用于所有类,这些模型在现实环境中可能不太有用。并且我们希望的模型能够识别它在训练期间没有见到过的类,因为几乎不可能在所有潜在对象的图像上进行训练。我们将从几个样本中学习

本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。 摘要本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。本文包括的内容如下:简介LazyPredict模块的安装在分类模型中实施LazyPredict

译者 | 朱先忠审校 | 孙淑娟引言模型超参数(或模型设置)的优化可能是训练机器学习算法中最重要的一步,因为它可以找到最小化模型损失函数的最佳参数。这一步对于构建不易过拟合的泛化模型也是必不可少的。优化模型超参数的最著名技术是穷举网格搜索和随机网格搜索。在第一种方法中,搜索空间被定义为跨越每个模型超参数的域的网格。通过在网格的每个点上训练模型来获得最优超参数。尽管网格搜索非常容易实现,但它在计算上变得昂贵,尤其是当要优化的变量数量很大时。另一方面,随机网格搜索是一种更快的优化方法,可以提供更好的

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠审校 | 孙淑娟简介通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境
