検索
ホームページバックエンド開発GolangGolang がレコメンデーションを実装: 機械学習からレコメンデーション システムまで

レコメンデーション システムは、今日のインターネット アプリケーションに不可欠な部分になっています。その機能は、ユーザーの過去の行動や好みに基づいてパーソナライズされた推奨サービスをユーザーに提供し、それによってユーザーの満足度と維持率を向上させることです。電子商取引、ソーシャル ネットワーキング、ビデオ、音楽など、すべてにレコメンデーション システムのサポートが必要です。

それでは、Golang を使用してレコメンデーション システムを実装するにはどうすればよいでしょうか?まず最初に、概念を明確にする必要があります。レコメンデーション システムは本質的に機械学習の問題です。したがって、Golang を使用してレコメンデーション システムを実装する前に、機械学習についてある程度の理解を得る必要があります。

機械学習に基づく推奨アルゴリズムは、主にコンテンツベースの推奨と協調フィルタリングの推奨の 2 つのカテゴリに分類されます。コンテンツベースのレコメンドでは、主にユーザーが属性に基づいて興味のあるアイテムをレコメンドします。協調フィルタリングの推奨は、ユーザーの過去の行動に基づいて、他のユーザーが興味を持つ可能性のあるアイテムを推奨します。協調フィルタリングの推奨事項は、ユーザーベースの CF とアイテムベースの CF の 2 つのタイプに分類されます。

Golang では、TensorFlow、Gorgonia、Golearn などのいくつかの機械学習ライブラリを使用できます。これらのライブラリは、推奨アルゴリズムの実装もすでにサポートしています。

アイテムベースの CF を例に挙げると、Gorgonia を使用して実装できます。具体的な手順は次のとおりです:

  1. データの前処理: アイテムに対するユーザーの評価を行列 R で表現する必要があります。この行列を処理することにより、アイテム間の類似度行列Wが得られる。
  2. トレーニング モデル: 損失関数を定義し、勾配降下法を使用して損失関数を最小化し、モデル パラメーターを取得する必要があります。ここで、行列因数分解モデルを使用して、評価行列を 2 つの小さな行列 P と Q に分解できます。 P行列はユーザ​​ーと潜在ベクトルの関係を表し、Q行列はアイテムと潜在ベクトルの関係を表します。
  3. モデルの評価: RMSE や MAE などのいくつかの評価指標を通じてモデルのパフォーマンスを評価できます。
  4. 推奨結果の生成: ユーザー u が与えられると、アイテムに対するユーザーの評価と評価行列 R を通じて、各アイテムに対するユーザー u の評価を取得できます。次に、各アイテムの評価に基づいて、ユーザー u が興味を持ちそうなアイテムを推奨できます。

アイテムベースの CF 推奨アルゴリズムを実装するには、多数の行列演算が必要です。そしてゴルゴニアはこのために生まれました。これは、Golang でベクトル化された計算と効率的な行列演算を実行できる、グラフ理論に基づいた動的コンピューティング フレームワークです。これにより、推奨アルゴリズムにおける行列分解などの複雑な計算を簡単に実装できるようになります。

Gorgonia に加えて、推奨アルゴリズムの実装に使用できるライブラリが他にもいくつかあります。たとえば、Golearn を使用して、KNN、デシジョン ツリー、単純ベイズなどのアルゴリズムを実装できます。 TensorFlow を使用して、ニューラル ネットワークやディープ ラーニングなどのアルゴリズムを実装できます。

つまり、Golang は効率的で同時実行性があり、信頼性の高い言語として、機械学習と人工知能の分野でますます多くの人々に使用されています。レコメンデーション システムに関しては、Golang はいくつかの機械学習ライブラリを使用してレコメンデーション アルゴリズムを実装することもできます。したがって、効率的でスケーラブルなレコメンデーション システムの実装を探している場合は、Golang が適しています。

以上がGolang がレコメンデーションを実装: 機械学習からレコメンデーション システムまでの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Go Language Packのインポート:アンダースコアとアンダースコアなしの違いは何ですか?Go Language Packのインポート:アンダースコアとアンダースコアなしの違いは何ですか?Mar 03, 2025 pm 05:17 PM

この記事では、Goのパッケージインポートメカニズム:名前付きインポート(例:インポート "fmt")および空白のインポート(例:_" fmt")について説明しています。 名前付きインポートはパッケージのコンテンツにアクセス可能になり、空白のインポートはtのみを実行します

Beegoフレームワークのページ間で短期情報転送を実装する方法は?Beegoフレームワークのページ間で短期情報転送を実装する方法は?Mar 03, 2025 pm 05:22 PM

この記事では、Webアプリケーションでのページ間データ転送のためのBeegoのnewflash()関数について説明します。 newflash()を使用して、コントローラー間で一時的なメッセージ(成功、エラー、警告)を表示し、セッションメカニズムを活用することに焦点を当てています。 リミア

MySQLクエリ結果リストをGO言語のカスタム構造スライスに変換する方法は?MySQLクエリ結果リストをGO言語のカスタム構造スライスに変換する方法は?Mar 03, 2025 pm 05:18 PM

この記事では、MySQLクエリの結果をGO structスライスに効率的に変換することを詳しく説明しています。 データベース/SQLのスキャン方法を使用して、手動で解析することを避けて強調しています。 DBタグとロブを使用した構造フィールドマッピングのベストプラクティス

GOでテスト用のモックオブジェクトとスタブを書くにはどうすればよいですか?GOでテスト用のモックオブジェクトとスタブを書くにはどうすればよいですか?Mar 10, 2025 pm 05:38 PM

この記事では、ユニットテストのためにGOのモックとスタブを作成することを示しています。 インターフェイスの使用を強調し、模擬実装の例を提供し、模擬フォーカスを維持し、アサーションライブラリを使用するなどのベストプラクティスについて説明します。 articl

GOのジェネリックのカスタムタイプ制約を定義するにはどうすればよいですか?GOのジェネリックのカスタムタイプ制約を定義するにはどうすればよいですか?Mar 10, 2025 pm 03:20 PM

この記事では、GENICSのGOのカスタムタイプの制約について説明します。 インターフェイスがジェネリック関数の最小タイプ要件をどのように定義するかを詳しく説明し、タイプの安全性とコードの再利用性を改善します。 この記事では、制限とベストプラクティスについても説明しています

Go言語でファイルを便利に書く方法は?Go言語でファイルを便利に書く方法は?Mar 03, 2025 pm 05:15 PM

この記事では、goで効率的なファイルの書き込みを詳しく説明し、os.writefile(小さなファイルに適している)とos.openfileおよびbuffered write(大規模ファイルに最適)と比較します。 延期エラー処理、Deferを使用し、特定のエラーをチェックすることを強調します。

Goでユニットテストをどのように書きますか?Goでユニットテストをどのように書きますか?Mar 21, 2025 pm 06:34 PM

この記事では、GOでユニットテストを書くことで、ベストプラクティス、モッキングテクニック、効率的なテスト管理のためのツールについて説明します。

トレースツールを使用して、GOアプリケーションの実行フローを理解するにはどうすればよいですか?トレースツールを使用して、GOアプリケーションの実行フローを理解するにはどうすればよいですか?Mar 10, 2025 pm 05:36 PM

この記事では、トレースツールを使用してGOアプリケーションの実行フローを分析します。 手動および自動計装技術について説明し、Jaeger、Zipkin、Opentelemetryなどのツールを比較し、効果的なデータの視覚化を強調しています

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

SublimeText3 英語版

SublimeText3 英語版

推奨: Win バージョン、コードプロンプトをサポート!

EditPlus 中国語クラック版

EditPlus 中国語クラック版

サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン