DALL-E を使用してイメージを作成したり、ChatGPT に定期レポートを作成させたりしている人は、大量のクラウド リソースを消費しています。誰がこれすべての費用を支払うのでしょうか?
翻訳者|Bugatti
レビュアー|Sun Shujuan
人工知能 (AI) は、あらゆるプラットフォーム (パブリック クラウドを含む) でリソースを大量に消費するテクノロジーです。ほとんどの AI テクノロジは大量の推論計算を必要とするため、プロセッサ、ネットワーク、ストレージ リソースの需要が増加し、最終的には電気代、インフラストラクチャのコスト、炭素排出量が増加します。
ChatGPT などの生成 AI システムの台頭により、この問題が再び最前線にさらされました。このテクノロジーの人気と、企業、政府、一般大衆による広範な使用の可能性を考慮すると、電力消費量の増加曲線には憂慮すべき弧が現れることが予想されます。
AI は 1970 年代から実現可能でしたが、成熟した AI システムが適切に動作するには多大なリソースが必要であるため、当初は商業的な効果はあまりありませんでした。私が 20 代の頃に設計した AI ベースのシステムを覚えていますが、それを実行するにはハードウェア、ソフトウェア、データ センターのスペースに 4,000 万ドル以上が必要でした。ちなみに、このプロジェクトは、他の多くの AI プロジェクトと同様、リリース日が決定されておらず、商用ソリューションは実現不可能でした。
クラウド コンピューティングはすべてを変えます。パブリック クラウドを使用すると、かつては手の届かなかったタスクを、十分な費用対効果で処理できるようになります。実際、ご想像のとおり、過去 10 ~ 15 年間、クラウド コンピューティングの台頭は AI の台頭と一致しており、現在、この 2 つは密接に関連していると言えます。
クラウド リソースの持続可能性とコスト
この分野で何が起こるかを予測するのに多くの調査は必要ありません。現在非常に人気のある生成 AI システムやその他の AI および機械学習システムなど、AI サービスに対する市場の需要は急増すると考えられます。先頭に立つのは、イノベーション(スマート サプライ チェーンなど)を通じて優位性を追求する企業、あるいは定期レポートを書くために生成 AI システムを検討している何千人もの大学生です。
AI に対する需要の増加は、パブリック クラウドやそれらが提供するサービスなど、AI システムで使用されるリソースに対する需要の増加を意味します。この需要は、電力を大量に消費するサーバーやネットワーク機器を収容するデータセンターの増加によって満たされると考えられます。
パブリック クラウド プロバイダーは、他のユーティリティ リソース プロバイダーと同様に、住宅の電気料金が季節ごとに増加するのと同じように、需要の増加に応じて価格を値上げします (これも需要に基づいています)。そのため、私たちは通常、電力消費量を制御し、夏にはエアコンの温度を高くします。
ただし、クラウド コンピューティングのコストが高くなっても、ビジネスに同じような影響が及ぶわけではありません。企業は、これらの AI システムが不可欠ではないが、特定の主要なビジネス プロセスを推進するために必要であると考えるかもしれません。多くの場合、AI システムのコストを相殺するために人員を削減するなどして、社内でコストを節約しようとしている可能性があります。生成 AI システムが間もなく多くの情報労働者に取って代わることは周知の事実です。
私たちに何ができるでしょうか?
AI システムを実行するためのリソースの需要により、コンピューティング コストと二酸化炭素排出量が増加する場合、それに対して何ができるでしょうか?その答えは、AI がプロセッサ、ネットワーク、ストレージなどのリソースを最大限に活用するためのより効率的な方法を見つけることにあるかもしれません。
たとえば、パイプラインをサンプリングすると、処理されるデータ量が減り、ディープ ラーニングを高速化できます。マサチューセッツ工科大学 (MIT) と IBM の研究によると、このアプローチを使用すると、大規模なデータ セットでニューラル ネットワークを実行するために必要なリソースを削減できることがわかりました。ただし、これにより精度も制限されるため、一部のビジネス ユースケースでは許容できますが、すべてのユースケースでは許容できません。
他のテクノロジー分野で使用されているもう 1 つのアプローチは、インメモリ コンピューティングです。このアーキテクチャでは、メモリ内外のデータの移動を回避することで AI 処理を高速化できます。代わりに、AI 計算がメモリ モジュール内で直接実行されるため、処理が大幅に高速化されます。
物理プロセッサを変更する(速度を上げるために AI 計算を処理するコプロセッサを使用する)ことや、量子コンピューティングなどの次世代コンピューティング モデルを採用するなど、他のアプローチも開発されています。近い将来、大規模なパブリック クラウド プロバイダーが、これらの問題の多くに対処するテクノロジーを発表することが予想されます。
どうすればいいですか?
この記事は、クラウド コンピューティングのコストを削減したり、地球を救ったりするために AI を回避するというものではありません。 AI は、ほとんどの企業が多大な価値を生み出すために使用できる基本的なコンピューティング手法です。
AI ベースの開発プロジェクトまたは新しい AI システム開発プロジェクトに着手する場合、コストと持続可能性は密接に関連しているため、コストと持続可能性への影響を明確に理解することをお勧めします。コストと利益の選択をする必要がありますが、これは実際に、負担しなければならないコストとリスクに対してどのような価値を会社にもたらすことができるかという古い話題に戻ります。ここには何も新しいことはありません。
私は、この問題は、インメモリ コンピューティング、量子コンピューティング、またはその他のまだ登場していないテクノロジーであっても、イノベーションによって解決されることが主に期待されていると信じています。 AI テクノロジー プロバイダーとクラウド コンピューティング プロバイダーは、AI をよりコスト効率が高く、エネルギー効率が高く、環境に優しいものにすることに熱心です。これは良いニュースです。
原題: 生成 AI のコストと持続可能性 、著者: David S. Linthicum
以上が生成 AI のコストと持続可能性の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

「AI-Ready労働力」という用語は頻繁に使用されますが、サプライチェーン業界ではどういう意味ですか? サプライチェーン管理協会(ASCM)のCEOであるAbe Eshkenaziによると、批評家ができる専門家を意味します

分散型AI革命は静かに勢いを増しています。 今週の金曜日、テキサス州オースティンでは、ビテンサーのエンドゲームサミットは極めて重要な瞬間を示し、理論から実用的な応用に分散したAI(DEAI)を移行します。 派手なコマーシャルとは異なり

エンタープライズAIはデータ統合の課題に直面しています エンタープライズAIの適用は、ビジネスデータを継続的に学習することで正確性と実用性を維持できるシステムを構築する大きな課題に直面しています。 NEMOマイクロサービスは、NVIDIAが「データフライホイール」と呼んでいるものを作成することにより、この問題を解決し、AIシステムがエンタープライズ情報とユーザーインタラクションへの継続的な露出を通じて関連性を維持できるようにします。 この新しく発売されたツールキットには、5つの重要なマイクロサービスが含まれています。 NEMOカスタマイザーは、より高いトレーニングスループットを備えた大規模な言語モデルの微調整を処理します。 NEMO評価者は、カスタムベンチマークのAIモデルの簡素化された評価を提供します。 Nemo Guardrailsは、コンプライアンスと適切性を維持するためにセキュリティ管理を実装しています

AI:芸術とデザインの未来 人工知能(AI)は、前例のない方法で芸術とデザインの分野を変えており、その影響はもはやアマチュアに限定されませんが、より深く影響を与えています。 AIによって生成されたアートワークとデザインスキームは、広告、ソーシャルメディアの画像生成、Webデザインなど、多くのトランザクションデザインアクティビティで従来の素材画像とデザイナーに迅速に置き換えられています。 ただし、プロのアーティストやデザイナーもAIの実用的な価値を見つけています。 AIを補助ツールとして使用して、新しい美的可能性を探求し、さまざまなスタイルをブレンドし、新しい視覚効果を作成します。 AIは、アーティストやデザイナーが繰り返しタスクを自動化し、さまざまなデザイン要素を提案し、創造的な入力を提供するのを支援します。 AIはスタイル転送をサポートします。これは、画像のスタイルを適用することです

最初はビデオ会議プラットフォームで知られていたZoomは、エージェントAIの革新的な使用で職場革命をリードしています。 ZoomのCTOであるXD Huangとの最近の会話は、同社の野心的なビジョンを明らかにしました。 エージェントAIの定義 huang d

AIは教育に革命をもたらしますか? この質問は、教育者と利害関係者の間で深刻な反省を促しています。 AIの教育への統合は、機会と課題の両方をもたらします。 Tech Edvocate NotesのMatthew Lynch、Universitとして

米国における科学的研究と技術の開発は、おそらく予算削減のために課題に直面する可能性があります。 Natureによると、海外の雇用を申請するアメリカの科学者の数は、2024年の同じ期間と比較して、2025年1月から3月まで32%増加しました。以前の世論調査では、調査した研究者の75%がヨーロッパとカナダでの仕事の検索を検討していることが示されました。 NIHとNSFの助成金は過去数か月で終了し、NIHの新しい助成金は今年約23億ドル減少し、3分の1近く減少しました。リークされた予算の提案は、トランプ政権が科学機関の予算を急激に削減していることを検討しており、最大50%の削減の可能性があることを示しています。 基礎研究の分野での混乱は、米国の主要な利点の1つである海外の才能を引き付けることにも影響を与えています。 35

Openaiは、強力なGPT-4.1シリーズを発表しました。実際のアプリケーション向けに設計された3つの高度な言語モデルのファミリー。 この大幅な飛躍は、より速い応答時間、理解の強化、およびTと比較した大幅に削減されたコストを提供します


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

WebStorm Mac版
便利なJavaScript開発ツール

ホットトピック









