ホームページ >運用・保守 >Linuxの運用と保守 >Linuxの割り込み番号は何を意味しますか?
Linux 割り込み番号は、識別および処理のためにシステムによって各割り込みソースに割り当てられるコードです。ベクトル割り込みモードを使用する割り込みシステムでは、CPU は割り込みサービス プログラムのエントリ アドレスを見つけるためにこれを使用する必要があります。プログラム転送を実行します。
#このチュートリアルの動作環境: linux5.9.8 システム、Dell G3 コンピューター。
linux 割り込み番号は何を意味しますか?
割り込み番号と割り込みプログラミング:
1、割り込み番号
割り込み番号は、識別と処理を容易にするために、システムによって各割り込みソースに割り当てられるコードです。ベクタ割込みを使用した割込みシステムでは、CPU はベクタ割込みを使用して割込みサービスプログラムのエントリアドレスを見つけ、プログラム転送を実現する必要があります。
ARM ベアメタルで割り込みを実装するには、次の設定を行う必要があります。
I/O口为中断模式,触发方式,I/O口中断使能 设置GIC中断使能,分发配置,分发总使能,CPU外部中断接口使能,中断优先级
Linux カーネルで割り込みを実装するには、次のことだけを知っておく必要があります:
中断号是什么,怎么得到中断号 中断处理方法
#2. 割り込み番号の取得方法:
/arm/boot/dts/exynos4412-fs4412.dts
1) 回路図を見て、チップのマニュアルに記載されています 割り込み番号 割り込みソースに対応する SPI ポート No
2 ) デバイス ツリーに入り、arch/arm/boot/dts /exynos4x12-pinctrl.dtsi
gpx1: gpx1 { gpio-controller; #gpio-cells = <2>; interrupt-controller; //中断控制器 interrupt-parent = <&gic>; //继承于gic interrupts = <0 24 0>, <0 25 0>, <0 26 0>, <0 27 0>, <0 28 0>, <0 29 0>, <0 30 0>, <0 31 0>; #interrupt-cells = <2>; //子继承的interrupts的长度 };
に移動します。括弧内の 24、25 などは SPI ポート番号に対応します。システムで定義されているノードです。
プログラミングでは、ボタンを記述する独自のノードを定義する必要があります。編集可能なデバイス ツリー ファイルを開きます:
arch/arm/boot/dts /exynos4412-fs4412.dts と入力し、ファイルを入力します。
3) ノードを定義し、現在のデバイスが使用する割り込み番号を記述します。
1 key_int_node{ 2 compatible = "test_key"; 3 interrupt-parent = ; //继承于gpx1 4 interrupts = ; //2表示第几个中断号,4表示触发方式为下降沿5 }; //interrupts里长度由父母的-cell决定
別の例として、k4 --- GPX3_2 のノードと割り込み番号を設定します。 (XEINT26)
1 key_int_node{ 2 compatible = "test_key"; 3 interrupt-parent = <&gpx3>; //继承于gpx3 4 interrupts = <2 4>; //2表示第2个中断号,4表示触发方式为下降沿 5 };
割り込み番号の確認方法:
I/O ピン GPX1_2 を見てください。割り込み番号は 2 番目の ## です。 ## GPX1 の場合 ## 4) デバイス ツリーをコンパイルします: make dtbs
デバイス ツリー ファイルを更新します: cp -raf Arch/arm/boot/dts/exynos4412-fs4412.dtb /tftpboot/
定義されたノードの表示 : ルートディレクトリの proc/device-tree/ ディレクトリ内
3. 割り込み処理の実装メソッド ドライバーのコードを通じて割り込み番号を取得し、割り込みを適用します
まず、割り込み関連の関数を見てみましょう。
1 a,获取到中断号码: 2 int get_irqno_from_node(void) 3 { 4 // 获取到设备树中的节点 5 struct device_node *np = of_find_node_by_path("/key_int_node"); 6 if(np){ 7 printk("find node ok\n"); 8 }else{ 9 printk("find node failed\n"); 10 } 11 12 // 通过节点去获取到中断号码 13 int irqno = irq_of_parse_and_map(np, 0); 14 printk("irqno = %d\n", irqno); 15 16 return irqno; 17 } 18 b,申请中断 19 int request_irq(unsigned int irq, irq_handler_t handler, unsigned long flags, const char * name, void * dev) 20 参数1: irq 设备对应的中断号 21 参数2: handler 中断的处理函数 22 typedef irqreturn_t (*irq_handler_t)(int, void *); 23 参数3:flags 触发方式 24 #define IRQF_TRIGGER_NONE 0x00000000 //内部控制器触发中断的时候的标志 25 #define IRQF_TRIGGER_RISING 0x00000001 //上升沿 26 #define IRQF_TRIGGER_FALLING 0x00000002 //下降沿 27 #define IRQF_TRIGGER_HIGH 0x00000004 // 高点平 28 #define IRQF_TRIGGER_LOW 0x00000008 //低电平触发 29 参数4:name 中断的描述,自定义,主要是给用户查看的 30 /proc/interrupts 31 参数5:dev 传递给参数2中函数指针的值 32 返回值: 正确为0,错误非0 33 34 35 参数2的赋值:即中断处理函数 36 irqreturn_t key_irq_handler(int irqno, void *devid) 37 { 38 return IRQ_HANDLED; 39 } 43 44 c, 释放中断: 45 void free_irq(unsigned int irq, void *dev_id) 46 参数1: 设备对应的中断号 47 参数2:与request_irq中第5个参数保持一致コードは、割り込み番号の取得と登録を実装しています。割り込み、キーを押して割り込みをトリガーし、情報を出力します。
1 #include <linux/init.h> 2 #include <linux/module.h> 3 #include <linux/fs.h> 4 #include <linux/device.h> 5 #include <asm/uaccess.h> 6 #include <asm/io.h> 7 #include <linux/slab.h> 8 #include <linux/of.h> 9 #include <linux/of_irq.h> 10 #include <linux/interrupt.h> 11 12 int irqno; //中断号 13 14 15 irqreturn_t key_irq_handler(int irqno, void *devid) 16 { 17 printk("----------%s---------",__FUNCTION__); 18 return IRQ_HANDLED; 19 } 20 21 22 //获取中断号 23 int get_irqno_from_node(void) 24 { 25 //获取设备树中的节点 26 struct device_node *np = of_find_node_by_path("/key_int_node"); 27 if(np){ 28 printk("find node success\n"); 29 }else{ 30 printk("find node failed\n"); 31 } 32 33 //通过节点去获取中断号 34 int irqno = irq_of_parse_and_map(np, 0); 35 printk("iqrno = %d",irqno); 36 37 return irqno; 38 } 39 40 41 42 static int __init key_drv_init(void) 43 { 44 //演示如何获取到中断号 45 int ret; 46 47 irqno = get_irqno_from_node(); 48 49 ret = request_irq(irqno, key_irq_handler, IRQF_TRIGGER_FALLING | IRQF_TRIGGER_RISING, 50 "key3_eint10", NULL); 51 if(ret != 0) 52 { 53 printk("request_irq error\n"); 54 return ret; 55 } 56 57 return 0; 58 } 59 60 static void __exit key_drv_exit(void) 61 { 62 free_irq(irqno, NULL); //free_irq与request_irq的最后一个参数一致 63 } 64 65 66 67 module_init(key_drv_init); 68 module_exit(key_drv_exit); 69 70 MODULE_LICENSE("GPL"); key_drv.c
key_drv.c
cat /proc/interrupt
4. 割り込みプログラミング---キャラクターデバイスドライバーフレームワーク
##// 1,设定一个全局的设备对象
key_dev = kzalloc(sizeof(struct key_desc), GFP_KERNEL);
// 2,申请主设备号
key_dev->dev_major = register_chrdev(0, "key_drv", &key_fops);
// 3,创建设备节点文件
key_dev->cls = class_create(THIS_MODULE, "key_cls");
key_dev->dev = device_create(key_dev->cls, NULL, MKDEV(key_dev->dev_major,0), NULL, "key0");
// 4,硬件初始化:
a.地址映射
b.中断申请
5. ドライバーは、ハードウェアによって生成されたデータをユーザーに渡す実装を実装します
1) ハードウェアがデータを取得する方法key: 按下和抬起: 1/0读取key对应的gpio的状态,可以判断按下还是抬起
读取key对应gpio的寄存器--数据寄存器
//读取数据寄存器int value = readl(key_dev->reg_base + 4) & (1<<2);
2) ドライバーが渡すユーザーへのデータ
在中断处理中填充数据: key_dev->event.code = KEY_ENTER; key_dev->event.value = 0; 在xxx_read中奖数据传递给用户 ret = copy_to_user(buf, &key_dev->event, count);
3 ) ユーザーはデータを取得します
#while(1) { read(fd, &event, sizeof(struct key_event)); if(event.code == KEY_ENTER) { if(event.value) { printf("APP__ key enter pressed\n"); }else{ printf("APP__ key enter up\n"); } } }#6. 例: #
1 #include <linux/init.h> 2 #include <linux/module.h> 3 #include <linux/of.h> 4 #include <linux/of_irq.h> 5 #include <linux/interrupt.h> 6 #include <linux/slab.h> 7 #include <linux/fs.h> 8 #include <linux/device.h> 9 #include <linux/kdev_t.h> 10 #include <linux/err.h> 11 #include <linux/device.h> 12 #include <asm/io.h> 13 #include <asm/uaccess.h> 14 15 16 #define GPXCON_REG 0X11000C20 //不可以从数据寄存器开始映射,要配置寄存器 17 #define KEY_ENTER 28 18 19 //0、设计一个描述按键的数据的对象 20 struct key_event{ 21 int code; //按键类型:home,esc,enter 22 int value; //表状态,按下,松开 23 }; 24 25 //1、设计一个全局对象——— 描述key的信息 26 struct key_desc{ 27 unsigned int dev_major; 28 int irqno; //中断号 29 struct class *cls; 30 struct device *dev; 31 void *reg_base; 32 struct key_event event; 33 }; 34 35 struct key_desc *key_dev; 36 37 38 irqreturn_t key_irq_handler(int irqno, void *devid) 39 { 40 printk("----------%s---------",__FUNCTION__); 41 42 int value; 43 //读取按键状态 44 value = readl(key_dev->reg_base + 4) & (0x01<<2); 45 46 if(value){ 47 printk("key3 up\n"); 48 key_dev->event.code = KEY_ENTER; 49 key_dev->event.value = 0; 50 }else{ 51 printk("key3 down\n"); 52 key_dev->event.code = KEY_ENTER; 53 key_dev->event.value = 1; 54 } 55 return IRQ_HANDLED; 56 } 57 58 59 //获取中断号 60 int get_irqno_from_node(void) 61 { 62 int irqno; 63 //获取设备树中的节点 64 struct device_node *np = of_find_node_by_path("/key_int_node"); 65 if(np){ 66 printk("find node success\n"); 67 }else{ 68 printk("find node failed\n"); 69 } 70 71 //通过节点去获取中断号 72 irqno = irq_of_parse_and_map(np, 0); 73 printk("iqrno = %d",key_dev->irqno); 74 75 return irqno; 76 } 77 78 ssize_t key_drv_read (struct file * filp, char __user * buf, size_t count, loff_t * fops) 79 { 80 //printk("----------%s---------",__FUNCTION__); 81 int ret; 82 ret = copy_to_user(buf, &key_dev->event, count); 83 if(ret > 0) 84 { 85 printk("copy_to_user error\n"); 86 return -EFAULT; 87 } 88 89 //传递给用户数据后,将数据清除,否则APP每次读都是第一次的数据 90 memset(&key_dev->event, 0, sizeof(key_dev->event)); 91 return count; 92 } 93 94 ssize_t key_drv_write (struct file *filp, const char __user * buf, size_t count, loff_t * fops) 95 { 96 printk("----------%s---------",__FUNCTION__); 97 return 0; 98 } 99 100 int key_drv_open (struct inode * inode, struct file *filp) 101 { 102 printk("----------%s---------",__FUNCTION__); 103 return 0; 104 } 105 106 int key_drv_close (struct inode *inode, struct file *filp) 107 { 108 printk("----------%s---------",__FUNCTION__); 109 return 0; 110 } 111 112 113 const struct file_operations key_fops = { 114 .open = key_drv_open, 115 .read = key_drv_read, 116 .write = key_drv_write, 117 .release = key_drv_close, 118 119 }; 120 121 122 123 static int __init key_drv_init(void) 124 { 125 //演示如何获取到中断号 126 int ret; 127 128 //1、设定全局设备对象并分配空间 129 key_dev = kzalloc(sizeof(struct key_desc), GFP_KERNEL); //GFP_KERNEL表正常分配内存 130 //kzalloc相比于kmalloc,不仅分配连续空间,还会将内存初始化清零 131 132 //2、动态申请设备号 133 key_dev->dev_major = register_chrdev(0, "key_drv", &key_fops); 134 135 //3、创建设备节点文件 136 key_dev->cls = class_create(THIS_MODULE, "key_cls"); 137 key_dev->dev = device_create(key_dev->cls, NULL, MKDEV(key_dev->dev_major, 0), NULL, "key0"); 138 139 //4、硬件初始化 -- 地址映射或中断申请 140 141 key_dev->reg_base = ioremap(GPXCON_REG,8); 142 143 key_dev->irqno = get_irqno_from_node(); 144 145 ret = request_irq(key_dev->irqno, key_irq_handler, IRQF_TRIGGER_FALLING | IRQF_TRIGGER_RISING, 146 "key3_eint10", NULL); 147 if(ret != 0) 148 { 149 printk("request_irq error\n"); 150 return ret; 151 } 152 153 //a. 硬件如何获取数据 154 155 156 157 return 0; 158 } 159 160 static void __exit key_drv_exit(void) 161 { 162 iounmap(GPXCON_REG); 163 free_irq(key_dev->irqno, NULL); //free_irq与request_irq的最后一个参数一致 164 device_destroy(key_dev->cls, MKDEV(key_dev->dev_major, 0)); 165 class_destroy(key_dev->cls); 166 unregister_chrdev(key_dev->dev_major, "key_drv"); 167 kfree(key_dev); 168 } 169 170 171 172 module_init(key_drv_init); 173 module_exit(key_drv_exit); 174 175 MODULE_LICENSE("GPL"); key_drv.c
key_drv .c1 #include <stdio.h>
2 #include <string.h>
3 #include <stdlib.h>
4 #include <unistd.h>
5 #include <sys/types.h>
6 #include <sys/stat.h>
7 #include <fcntl.h>
8
9
10 #define KEY_ENTER 28
11
12 //0、设计一个描述按键的数据的对象
13 struct key_event{
14 int code; //按键类型:home,esc,enter
15 int value; //表状态,按下,松开
16 };
17
18
19 int main(int argc, char *argv[])
20 {
21 struct key_event event;
22 int fd;
23 fd = open("/dev/key0", O_RDWR);
24 if(fd < 0)
25 {
26 perror("open");
27 exit(1);
28 }
29
30 while(1)
31 {
32 read(fd, &event, sizeof(struct key_event));
33
34 if(event.code == KEY_ENTER)
35 {
36 if(event.value)
37 {
38 printf("APP__ key enter down\n");
39 }else{
40
41 printf("APP__ key enter up\n");
42 }
43 }
44 }
45
46 close(fd);
47
48 return 0;
49 }
key_test.c
key_test.c
1 ROOTFS_DIR = /home/linux/source/rootfs#根文件系统路径 2 3 APP_NAME = key_test 4 MODULE_NAME = key_drv 5 6 CROSS_COMPILE = /home/linux/toolchains/gcc-4.6.4/bin/arm-none-linux-gnueabi- 7 CC = $(CROSS_COMPILE)gcc 8 9 ifeq ($(KERNELRELEASE),) 10 11 KERNEL_DIR = /home/linux/kernel/linux-3.14-fs4412 #编译过的内核源码的路径 12 CUR_DIR = $(shell pwd) #当前路径 13 14 all: 15 make -C $(KERNEL_DIR) M=$(CUR_DIR) modules #把当前路径编成modules 16 $(CC) $(APP_NAME).c -o $(APP_NAME) 17 @#make -C 进入到内核路径 18 @#M 指定当前路径(模块位置) 19 20 clean: 21 make -C $(KERNEL_DIR) M=$(CUR_DIR) clean 22 23 install: 24 sudo cp -raf *.ko $(APP_NAME) $(ROOTFS_DIR)/drv_module #把当前的所有.ko文件考到根文件系统的drv_module目录 25 26 else 27 28 obj-m += $(MODULE_NAME).o #指定内核要把哪个文件编译成ko 29 30 endif Makefile
ユーザープログラムを実行し、 ボタンを押すと情報が表示されます。
ユーザープログラムを終了し、 ボタンを押すと、対応する情報が表示されます。
# デバイスと割り込みノードの情報を表示します:
## CPU 状況を確認します。 : key_test アプリケーションが多くの CPU を使用していることがわかります。その理由は何ですか? アプリケーションでは、常に while ループを通じてカーネル情報が読み取られ、キー割り込みが発生すると key_event に値が代入され、while ループ内で判定されて出力されるため、ユーザーはスペース カーネルスペースを行ったり来たりし続けると、常に読み取りを行うと大量の CPU リソースが消費されます。 解決策: 割り込みが発生すると、read が呼び出され、データが生成されない場合は、プロセス スケジュールが飛び出て、プロセスがスリープします。 推奨学習: 「Linux ビデオ チュートリアル 」
以上がLinuxの割り込み番号は何を意味しますか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。