この記事では、Node の Buffer クラスについて詳しく説明します。皆様のお役に立てれば幸いです。
TypedArray が登場する前は、JavaScript 言語は raw binary data(raw binary data) をうまく扱うことができませんでした。 JavaScript は当初、主にブラウザーのスクリプト言語として使用されていたため、ネイティブ バイナリ データを処理する必要があるシナリオはほとんどなかったためです。 Node が登場した後、サーバー側アプリケーションは ファイルの読み書き や TCP 接続 などの多数のバイナリ ストリームを処理する必要があるためです。 , ノードは JavaScript (V8) 内にあります。また、新しいデータ型 Buffer が定義されています。 Buffer は Node アプリケーションで広く使用されているため、その使用法を真にマスターすることによってのみ、より優れた Node アプリケーションを作成できます。 [関連するチュートリアルの推奨事項: nodejs ビデオ チュートリアル 、プログラミング指導 ]
バイナリの基礎
正式なはじめに Buffer の具体的な使い方の前に、バイナリに関する知識を簡単に復習しましょう。
プログラマとして、私たちは皆バイナリについてよく知っている必要があります。コンピュータの基礎となるデータはすべてバイナリ (バイナリ) 形式で保存されているためです。つまり、コンピュータ内のファイルは、プレーン テキスト、画像、ビデオのいずれであっても、コンピュータのハード ドライブ上の 2 つの番号 01 で構成されています。コンピューター サイエンスでは、単一の数値 0 または 1 を ビット (ビット) と呼び、8 ビット で ## を形成できます。 #バイト(バイト)。 10 進数 16 が 1 バイトで表される場合、基礎となるストレージ構造は次のとおりです: 16 が 2 進数で表される場合、10 進数よりも 6 桁多いことがわかります。は 2 進数になるため、読み取りと書き込み には非常に不便になります。このため、プログラマーは通常、バイナリを直接使用する代わりに、hexadecimal (16 進数) を使用してデータを表すことを好みます。たとえば、CSS を記述するときは、color の値を使用します。16 進数 (例: #FFFFFF) 0 と 1 の束の代わりに。
文字エンコーディングすべてのデータの最下層はバイナリであり、ネットワーク上で送信されるデータもバイナリであるため、この記事はなぜ私たちは今読んでいます
#0と 1 の束の代わりに ##中文 はどうでしょうか?ここでは、文字エンコーディングの概念を紹介します。いわゆる 文字エンコードは、単なる マッピング関係テーブル であり、文字 (漢字、英語文字、またはその他の文字) と 2 進数 (数バイトを含む)相互に対応します。たとえば、使い慣れた ascii を使用してエンコードすると、英語文字 a のバイナリ表現は 0b01100001 になります (0b はバイナリです)番号プレフィックス)。したがって、コンピューターが ascii エンコードされた ファイルからバイナリ データ 0b01100001 の文字列を読み取ると、文字 a が画面に表示されます。 a は、コンピューターに保存またはネットワーク上で送信される場合の 0b01100001 のバイナリ データです。 ascii コードに加えて、一般的な文字エンコーディングには utf-8 や utf-16 などが含まれます。 バッファ
基本的な
バイナリ知識と
文字エンコーディングの概念を習得したら、いよいよ正式に学習できるようになります。 ###バッファ###。 Buffer:Node.js の Buffer
クラスは、生のバイナリ データを処理するように設計されています。各バッファは、V8 の外部に割り当てられた生のメモリに対応します。バッファは整数の配列のように動作しますが、サイズ変更はできず、バイナリ データに特化したメソッドが多数あります。バッファ内の整数はそれぞれ 1 バイトを表すため、次の値に制限されます。値は 0 ~ 255 です。
を使用してBuffer
インスタンスを出力すると、一連の値が 16 進数値で取得されます。
簡単に言えば、いわゆる バッファ は、V8 ヒープ メモリ の外側にノードによって割り当てられる 固定サイズ メモリ空間です。 console.log を使用して Buffer を出力すると、16 進数 ## の文字列が bytes 単位で出力されます。 # は値を表します。
バッファの作成
Buffer の基本概念を理解した後、Buffer を作成しましょう物体。 Buffer を作成する方法は数多くありますが、一般的な方法は Buffer.alloc、Buffer.allocUnsafe、および Buffer.from です。
Buffer.alloc(size[, fill[,coding]])これはバッファを作成する最も一般的な方法です。バッファのサイズを渡すだけで済みますconst buff = Buffer.alloc(5) console.log(buff) // Prints: <Buffer 00 00 00 00 00>上記のコードでは、##5 バイト
のサイズのバッファー領域を作成しました。console.log 関数は、内容を示す 5 つの連続する 16 進数を出力します。現在バッファに保存されています。現在のバッファが 0 で満たされていることがわかります。これはノードのデフォルトの動作です。次の 2 つのパラメータ fill と encoding を設定して、Fill を指定できます。初期化中の追加コンテンツ内。 ここで言及しておく価値があるのは、上記のコードでは、
node:buffer パッケージから明示的にインポートせずに、Node グローバル Buffer オブジェクトを使用しているということです。実際の開発では、 後者の を使用する必要があります: import { Buffer } from 'node:buffer'
Buffer.allocUnsafe
と Buffer.alloc の違いは、allocUnsafe 関数の使用に適用されるメモリ空間が 初期化されていないことです。つまり、前回使用したデータがまだ残っている可能性があるため、データ セキュリティの問題が発生します。 allocUnsafe この関数は、バッファ領域のサイズとして size パラメータを受け取ります。
const buff = Buffer.allocUnsafe(5) console.log(buff) // Prints (实际内容可能有出入): <Buffer 8b 3f 01 00 00>上記の出力結果から判断すると、 の使用を制御できません。 Buffer.allocUnsafe割り当てられたバッファの内容。割り当てられたメモリが初期化されていないため、この関数は
Buffer.alloc よりも高速にバッファを割り当てます。実際の開発では、実際のニーズに基づいて選択する必要があります。 Buffer.from
この関数は、バッファを作成するために 最も一般的に使用される
関数であり、さまざまなオーバーロードがありますつまり、渡されるパラメーターが異なれば、動作も異なります。いくつかの一般的なオーバーロードを見てみましょう: Buffer.from(string[, encoding])
渡す最初のパラメータが String## の場合# type の場合、Buffer.from は、文字列のエンコーディング (
encoding パラメーター、デフォルトは utf8) に基づいて、文字列に対応するバイナリ表現を生成します。例を見てみましょう: const buff = Buffer.from('你好世界')
console.log(buff)
// Prints: <Buffer e4 bd a0 e5 a5 bd e4 b8 96 e7 95 8c>
console.log(buff.toString())
// Prints: '你好世界'
console.log(buff.toString('ascii'))
// Prints: ''d= e%=d8\x16g\x15\f''
上記の例では、文字列 "Hello World" を使用してバッファの初期化を完了しました。2 番目の encoding パラメータを渡さなかったため、デフォルトのエンコードは
です。その後、最初の console.log の出力を見ると、渡した文字列には 4 文字しかありませんが、初期化されたバッファには 12 バイトがあることがわかります。 utf8 エンコーディングの中国語文字は表現するために 3 バイトを使用するためです。次に、buff.toString() メソッドを使用してバフの内容を表示します。toString メソッドのデフォルトのエンコード出力形式は utf8 であるため、2 番目の ## が表示されます。 #console .log は、buff ストレージの内容を正しく出力できます。ただし、3 番目の console.log では、文字エンコーディング タイプが ascii であると指定されており、この時点で大量の文字化けが確認されます。これを見ると、先ほど述べた 文字エンコーディング についての理解がさらに深まったと思います。 Buffer.from(buffer)
Buffer.from で受け取ったパラメータがバッファ オブジェクトの場合、Node は新しい Buffer インスタンスを作成し、それをバッファの内容を新しい Buffer オブジェクトにcopy します。 const buf1 = Buffer.from('buffer')
const buf2 = Buffer.from(buf1)
console.log(buf1)
// Prints: <Buffer 62 75 66 66 65 72>
console.log(buf2)
// Prints: <Buffer 62 75 66 66 65 72>
buf1[0] = 0x61
console.log(buf1.toString())
// Prints: auffer
console.log(buf2.toString())
// Prints: buffer
上記の例では、最初にバッファ オブジェクト buf1 を作成しました。そこに格納されるコンテンツは文字列「buffer」であり、次にこのバッファ オブジェクトを通じて新しいバッファ オブジェクトを初期化しました。 buf2
。このとき、buf1 の最初のバイトを 0x61 (a のエンコーディング) に変更すると、buf1 の出力が auffer になることがわかりました。 buf2 の内容は変更されていません。これは、Buffer.from(buffer) がデータのコピーであるという見解を裏付けています。
?注意:当Buffer的数据很大的时候,Buffer.from拷贝数据的性能是很差的,会造成CPU占用飙升,主线程卡死的情况,所以在使用这个函数的时候一定要清楚地知道Buffer.from(buffer)背后都做了什么。笔者就在实际项目开发中踩过这个坑,导致线上服务响应缓慢!
Buffer.from(arrayBuffer[, byteOffset[, length]])
说完了buffer参数,我们再来说一下arrayBuffer参数,它的表现和buffer是有很大的区别的。ArrayBuffer是ECMAScript定义的一种数据类型,它简单来说就是一片你不可以直接(或者不方便)使用的内存,你必须通过一些诸如Uint16Array的TypedArray对象作为View来使用这片内存,例如一个Uint16Array对象的.buffer
属性就是一个ArrayBuffer对象。当Buffer.from函数接收一个ArrayBuffer作为参数时,Node会创建一个新的Buffer对象,不过这个Buffer对象指向的内容还是原来ArrayBuffer
的内容,没有任何的数据拷贝行为。我们来看个例子:
const arr = new Uint16Array(2) arr[0] = 5000 arr[1] = 4000 const buf = Buffer.from(arr.buffer) console.log(buf) // Prints: <Buffer 88 13 a0 0f> // 改变原来数组的数字 arr[1] = 6000 console.log(buf) // Prints: <Buffer 88 13 70 17>
从上面例子的输出我们可以知道,arr和buf对象会共用同一片内存空间,所以当我们改变原数组的数据时,buf的数据也会发生相应的变化。
其它Buffer操作
看完了创建Buffer的几种做法,我们接着来看一下Buffer其它的一些常用API或者属性
buf.length
这个函数会返回当前buffer占用了多少字节
// 创建一个大小为1234字节的Buffer对象 const buf1 = Buffer.alloc(1234) console.log(buf1.length) // Prints: 1234 const buf2 = Buffer.from('Hello') console.log(buf2.length) // Prints: 5
Buffer.poolSize
这个字段表示Node会为我们预创建的Buffer池子有多大,它的默认值是8192,也就是8KB。Node在启动的时候,它会为我们预创建一个8KB大小的内存池,当用户用某些API(例如Buffer.alloc)创建Buffer实例的时候可能会用到这个预创建的内存池以提高效率,下面是一个具体的例子:
const buf1 = Buffer.from('Hello') console.log(buf1.length) // Prints: 5 // buf1的buffer属性会指向其底层的ArrayBuffer对象对应的内存 console.log(buf1.buffer.byteLength) // Prints: 8192 const buf2 = Buffer.from('World') console.log(buf2.length) // Prints: 5 // buf2的buffer属性会指向其底层的ArrayBuffer对象对应的内存 console.log(buf2.buffer.byteLength) // Prints: 8192
在上面的例子中,buf1
和buf2
对象由于长度都比较小所以会直接使用预创建的8KB内存池。其在内存的大概表示如图:这里值得一提的是只有当需要分配的内存区域小于4KB(8KB的一半)并且现有的Buffer池子还够用的时候,新建的Buffer才会直接使用当前的池子,否则Node会新建一个新的8KB的池子或者直接在内存里面分配一个区域(FastBuffer)。
buf.write(string[, offset,[, length]][, encoding])
这个函数可以按照一定的偏移量(offset)往一个Buffer实例里面写入一定长度(length)的数据。我们来看一下具体的例子:
const buf = Buffer.from('Hello') console.log(buf.toString()) // Prints: "Hello" // 从第3个位置开始写入'LLO'字符 buf.write('LLO', 2) console.log("HeLLO") // Prints: "HeLLO"
这里需要注意的是当我们需要写入的字符串的长度超过buffer所能容纳的最长字符长度(buf.length)时,超过长度的字符会被丢弃:
const buf = Buffer.from('Hello') buf.write('LLO!', 2) console.log(buf.toString()) // Print:s "HeLLO"
另外,当我们写入的字符长度超过buffer的最长长度,并且最后一个可以写入的字符不能全部填满时,最后一个字符整个不写入:
const buf = Buffer.from('Hello') buf.write('LL你', 2) console.log(buf.toString()) // Prints "HeLLo"
在上面的例子中,由于"你"是中文字符,需要占用三个字节,所以不能全部塞进buf里面,因此整个字符的三个字节都被丢弃了,buf对象的最后一个字节还是保持"o"不变。
Buffer.concat(list[, totalLength])
这个函数可以用来拼接多个Buffer对象生成一个新的buffer。函数的第一个参数是待拼接的Buffer数组,第二个参数表示拼接完的buffer的长度是多少(totalLength)。下面是一个简单的例子:
const buf1 = Buffer.from('Hello') const buf2 = Buffer.from('World') const buf = Buffer.concat([buf1, buf2]) console.log(buf.toString()) // Prints "HelloWorld"
上面的例子中,因为我们没有指定最终生成Buffer对象的长度,所以Node会计算出一个默认值,那就是buf.totalLength = buf1.length + buf2.length
。而如果我们指定了totalLength的值的话,当这个值比buf1.lengh + buf2.length
小时,Node会截断最后生成的buffer;如果指定的值比buf1.length + buf2.length
大时,生成buf对象的长度还是totalLength,多出来的位数填充的内容是0。
这里还有一点值得指出的是,Buffer.concat最后拼接出来的Buffer对象是通过拷贝原来Buffer对象得出来,所以改变原来的Buffer对象的内容不会影响到生成的Buffer对象,不过这里我们还是需要考虑拷贝的性能问题就是了。
Buffer オブジェクトのガベージ コレクション
記事の冒頭で、Node 内のすべての Buffer オブジェクトによって割り当てられるメモリ領域は V8 から独立していると述べました。 ヒープ領域は、オフヒープメモリに属します。これは、Buffer オブジェクトが V8 ガベージ コレクション メカニズム の影響を受けず、手動でメモリを管理する必要があるということですか?実際にはいいえ、Node の API を使用して新しい Buffer オブジェクトを作成するたびに、各 Buffer オブジェクトは JavaScript 空間のオブジェクト (バッファ メモリへの参照) に対応します。このオブジェクトは V8 ガベージ コレクションによって制御されます。そして、Node が必要とするのは以下だけです。この reference がガベージ コレクションされるときに、いくつかのフックをハングして、バッファーが指すオフヒープ メモリを解放します。 簡単に言うと、Buffer によって割り当てられたスペースについて心配する必要はありません。V8 のガベージ コレクション メカニズムは、無駄なメモリを再利用するのに役立ちます。
概要
この記事では、Buffer の一般的な API やプロパティなど、Buffer の基本的な知識を紹介しました。この知識があなたの仕事に役立つことを願っています。 。 ヘルプ。
ノード関連の知識の詳細については、nodejs チュートリアル を参照してください。
以上がこの記事では、Node の Buffer クラスについて詳しく説明します。の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

PythonとJavaScriptには、コミュニティ、ライブラリ、リソースの観点から、独自の利点と短所があります。 1)Pythonコミュニティはフレンドリーで初心者に適していますが、フロントエンドの開発リソースはJavaScriptほど豊富ではありません。 2)Pythonはデータサイエンスおよび機械学習ライブラリで強力ですが、JavaScriptはフロントエンド開発ライブラリとフレームワークで優れています。 3)どちらも豊富な学習リソースを持っていますが、Pythonは公式文書から始めるのに適していますが、JavaScriptはMDNWebDocsにより優れています。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

C/CからJavaScriptへのシフトには、動的なタイピング、ゴミ収集、非同期プログラミングへの適応が必要です。 1)C/Cは、手動メモリ管理を必要とする静的に型付けられた言語であり、JavaScriptは動的に型付けされ、ごみ収集が自動的に処理されます。 2)C/Cはマシンコードにコンパイルする必要がありますが、JavaScriptは解釈言語です。 3)JavaScriptは、閉鎖、プロトタイプチェーン、約束などの概念を導入します。これにより、柔軟性と非同期プログラミング機能が向上します。

さまざまなJavaScriptエンジンは、各エンジンの実装原則と最適化戦略が異なるため、JavaScriptコードを解析および実行するときに異なる効果をもたらします。 1。語彙分析:ソースコードを語彙ユニットに変換します。 2。文法分析:抽象的な構文ツリーを生成します。 3。最適化とコンパイル:JITコンパイラを介してマシンコードを生成します。 4。実行:マシンコードを実行します。 V8エンジンはインスタントコンピレーションと非表示クラスを通じて最適化され、Spidermonkeyはタイプ推論システムを使用して、同じコードで異なるパフォーマンスパフォーマンスをもたらします。

現実世界におけるJavaScriptのアプリケーションには、サーバー側のプログラミング、モバイルアプリケーション開発、モノのインターネット制御が含まれます。 2。モバイルアプリケーションの開発は、ReactNativeを通じて実行され、クロスプラットフォームの展開をサポートします。 3.ハードウェアの相互作用に適したJohnny-Fiveライブラリを介したIoTデバイス制御に使用されます。

私はあなたの日常的な技術ツールを使用して機能的なマルチテナントSaaSアプリケーション(EDTECHアプリ)を作成しましたが、あなたは同じことをすることができます。 まず、マルチテナントSaaSアプリケーションとは何ですか? マルチテナントSaaSアプリケーションを使用すると、Singの複数の顧客にサービスを提供できます

この記事では、許可によって保護されたバックエンドとのフロントエンド統合を示し、next.jsを使用して機能的なedtech SaaSアプリケーションを構築します。 FrontEndはユーザーのアクセス許可を取得してUIの可視性を制御し、APIリクエストがロールベースに付着することを保証します

JavaScriptは、現代のWeb開発のコア言語であり、その多様性と柔軟性に広く使用されています。 1)フロントエンド開発:DOM操作と最新のフレームワーク(React、Vue.JS、Angularなど)を通じて、動的なWebページとシングルページアプリケーションを構築します。 2)サーバー側の開発:node.jsは、非ブロッキングI/Oモデルを使用して、高い並行性とリアルタイムアプリケーションを処理します。 3)モバイルおよびデスクトップアプリケーション開発:クロスプラットフォーム開発は、反応および電子を通じて実現され、開発効率を向上させます。

JavaScriptの最新トレンドには、TypeScriptの台頭、最新のフレームワークとライブラリの人気、WebAssemblyの適用が含まれます。将来の見通しは、より強力なタイプシステム、サーバー側のJavaScriptの開発、人工知能と機械学習の拡大、およびIoTおよびEDGEコンピューティングの可能性をカバーしています。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

ドリームウィーバー CS6
ビジュアル Web 開発ツール

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、
