ホームページ >バックエンド開発 >Python チュートリアル >Python でのテキスト特徴抽出の方法を 1 つの記事でマスターする
[関連する推奨事項: Python3 ビデオ チュートリアル ]
ディクショナリを作成し、次のデータ フォームの変更を観察します:
import pandas as pd from sklearn.feature_extraction import DictVectorizer data = [{'city': '洛阳', 'temperature': 39}, {'city': '成都', 'temperature': 41}, {'city': '宁波', 'temperature': 42}, {'city': '佛山', 'temperature': 38}] df1 = pd.DataFrame(data) print(df1) # one-hot编码 因为temperature是数值型的,所以会保留原始值,只有字符串类型的才会生成虚拟变量 df2 = pd.get_dummies(df1) print(df2)
出力は次のとおりです:
DictVectorizer() を使用して辞書特徴抽出モデルを作成する
# 1.创建对象 默认sparse=True 返回的是sparse矩阵; sparse=False 返回的是ndarray矩阵 transfer = DictVectorizer() # 2.转化数据并训练 trans_data = transfer.fit_transform(data) print(transfer.get_feature_names_out()) print(trans_data)
スパースの使用行列は 0 データを表示しないため、メモリが節約され、より簡潔になり、ndarray 行列よりも優れています。
テキスト特徴抽出では、CountVectorizer テキスト特徴抽出モデルを使用します。これは英語のテキストです (I have a dream)。単語の頻度をカウントし、スパース行列を取得します。コードは次のとおりです:
CountVectorizer() にはスパース パラメーターがなく、デフォルトでスパース行列形式を使用します。また、ストップワードは stop_words を通じて指定できます。
from sklearn.feature_extraction.text import CountVectorizer data = ["I have a dream that one day this nation will rise up and live out the true meaning of its creed", "We hold these truths to be self-evident, that all men are created equal", "I have a dream that one day on the red hills of Georgia, " "the sons of former slaves and the sons of former slave owners will be able to sit down together at the table of brotherhood", "I have a dream that one day even the state of Mississippi", " a state sweltering with the heat of injustice", "sweltering with the heat of oppression", "will be transformed into an oasis of freedom and justice", "I have a dream that my four little children will one day live in a nation where they will not be judged by the color of their skin but by the content of their character", "I have a dream today"] # CountVectorizer文本特征提取模型 # 1.实例化 将"is"标记为停用词 c_transfer = CountVectorizer(stop_words=["is"]) # 2.调用fit_transform c_trans_data = c_transfer.fit_transform(data) # 打印特征名称 print(c_transfer.get_feature_names_out()) # 打印sparse矩阵 print(c_trans_data)
出力結果は下図のとおりです:
中国語テキスト(データ)を用意します。 .txt) を例として、水滸伝の雪山寺院のプロットを取り上げます。
大雪下的正紧,林冲和差拨两个在路上又没买酒吃处。早来到草料场外,看时,一周遭有些黄土墙,两扇大门。推开看里面时,七八间草房做着仓廒,四下里都是马草堆,中间两座草厅。到那厅里,只见那老军在里面向火。差拨说道:“管营差这个林冲来替你回天王堂看守,你可即便交割。”老军拿了钥匙,引着林冲,分付道:“仓廒内自有官司封记,这几堆草一堆堆都有数目。”老军都点见了堆数,又引林冲到草厅上。老军收拾行李,临了说道:“火盆、锅子、碗碟,都借与你。”林冲道:“天王堂内我也有在那里,你要便拿了去。”老军指壁上挂一个大葫芦,说道:“你若买酒吃时,只出草场,投东大路去三二里,便有市井。”老军自和差拨回营里来。 只说林冲就床上放了包裹被卧,就坐下生些焰火起来。屋边有一堆柴炭,拿几块来生在地炉里。仰面看那草屋时,四下里崩坏了,又被朔风吹撼,摇振得动。林冲道:“这屋如何过得一冬?待雪晴了,去城中唤个泥水匠来修理。”向了一回火,觉得身上寒冷,寻思:“却才老军所说五里路外有那市井,何不去沽些酒来吃?”便去包里取些碎银子,把花枪挑了酒葫芦,将火炭盖了,取毡笠子戴上,拿了钥匙,出来把草厅门拽上。出到大门首,把两扇草场门反拽上,锁了。带了钥匙,信步投东。雪地里踏着碎琼乱玉,迤逦背着北风而行。那雪正下得紧。 行不上半里多路,看见一所古庙。林冲顶礼道:“神明庇佑,改日来烧钱纸。”又行了一回,望见一簇人家。林冲住脚看时,见篱笆中挑着一个草帚儿在露天里。林冲径到店里,主人道:“客人那里来?”林冲道:“你认得这个葫芦么?”主人看了道:“这葫芦是草料场老军的。”林冲道:“如何便认的?”店主道:“既是草料场看守大哥,且请少坐。天气寒冷,且酌三杯权当接风。”店家切一盘熟牛肉,烫一壶热酒,请林冲吃。又自买了些牛肉,又吃了数杯。就又买了一葫芦酒,包了那两块牛肉,留下碎银子,把花枪挑了酒葫芦,怀内揣了牛肉,叫声相扰,便出篱笆门,依旧迎着朔风回来。看那雪,到晚越下的紧了。古时有个书生,做了一个词,单题那贫苦的恨雪: 广莫严风刮地,这雪儿下的正好。扯絮挦绵,裁几片大如栲栳。见林间竹屋茅茨,争些儿被他压倒。富室豪家,却言道压瘴犹嫌少。向的是兽炭红炉,穿的是绵衣絮袄。手捻梅花,唱道国家祥瑞,不念贫民些小。高卧有幽人,吟咏多诗草。
中国語からテキスト特徴を抽出するには、jieba ライブラリをインストールして使用する必要があります。このライブラリを使用してテキストをスペースで単語を接続する形式に処理し、CountVectorizer テキスト特徴抽出モデルを使用して抽出します。
コード例は次のとおりです。
import jieba from sklearn.feature_extraction.text import CountVectorizer # 将文本转为以空格相连的字符串 def cut_word(sent): return " ".join(list(jieba.cut(sent))) # 将文本以行为单位,去除空格,并置于列表中。格式形如:["第一行","第二行",..."n"] with open("./论文.txt", "r") as f: data = [line.replace("\n", "") for line in f.readlines()] lis = [] # 将每一行的词汇以空格连接 for temp in data: lis.append(cut_word(temp)) transfer = CountVectorizer() trans_data = transfer.fit_transform(lis) print(transfer.get_feature_names()) # 输出sparse数组 print(trans_data) # 转为ndarray数组(如果需要) print(trans_data.toarray())
プログラムの実行結果は次のとおりです。
変換された ndarray 配列形式 (if表示:
TF-IDF テキスト抽出ツールを使用できます。ファイルの単語を評価する コレクションまたはコーパス内の文書の重要性。
コードは次のとおりです:
from sklearn.feature_extraction.text import TfidfVectorizer import jieba def cut_word(sent): return " ".join(list(jieba.cut(sent))) with open("data.txt", "r") as f: data = [line.replace("\n", "") for line in f.readlines()] lis = [] for temp in data: # print(cut_word(temp)) lis.append(cut_word(temp)) transfer = TfidfVectorizer() print(transfer.get_feature_names()) print(trans_data)
プログラムの実行結果は次のとおりです:
#[関連する推奨事項:Python3ビデオチュートリアル ]
以上がPython でのテキスト特徴抽出の方法を 1 つの記事でマスターするの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。