検索
ホームページバックエンド開発Python チュートリアルPython NumPy チュートリアルのデータ型オブジェクト

[関連する推奨事項: Python3 ビデオ チュートリアル ]

各 ndarray には、関連付けられたデータ型 (dtype) オブジェクトがあります。このデータ型オブジェクト (dtype) は、配列のレイアウトを示します。これは、次の情報が得られることを意味します:

  • データ型 (整数、浮動小数点数、Python オブジェクトなど)
  • データ サイズ (バイト数)
  • データのエンディアン (リトル エンディアンまたはビッグ エンディアン)
  • データ型がサブ配列の場合、その形状とデータ型は何ですか。

ndarray の値はバッファに格納され、メモリ バイトの連続したブロックとして見ることができます。したがって、これらのバイトがどのように解釈されるかは、dtype オブジェクトによって指定されます。

データ型 (dtype) オブジェクトの構築

データ型オブジェクトは numpy.dtype クラスのインスタンスであり、numpy.dtype.

を使用できます。

パラメータ:

obj: データ型オブジェクトに変換されるオブジェクト。

align : [bool、オプション] C コンパイラが C ライクな構造に対して出力するものと一致するようにフィールドにパディングを追加します。

copy : [ブール値、オプション] データ型オブジェクトの新しいコピーを作成します。 False の場合、結果は単に組み込みデータ型オブジェクトへの参照である可能性があります。

# Python 程序创建数据类型对象
import numpy as np
 
# np.int16 被转换为数据类型对象。
print(np.dtype(np.int16))

出力:

#int16

# Python 程序创建一个包含 32 位大端整数的数据类型对象
import numpy as np
 
# i4 表示大小为 4 字节的整数
# > 表示大端字节序和
# < 表示小端编码。
# dt 是一个 dtype 对象
dt = np.dtype(&#39;>i4&#39;)
 
print("Byte order is:",dt.byteorder)
 
print("Size is:", dt.itemsize)
 
print("Data type is:", dt.name)

出力:

バイト順序は: >

サイズは: 4
データ型の名前は: int32

型指定子 (上記の場合は i4) を取得できますさまざまな形式:

b1、i1、i2、i4、i8、u1、u2、u4、u8、f2、f4、f8、c8、c16、a (バイト、整数、なしを表す符号付き整数) 、浮動小数点数、

バイト 長さを指定する複素数、および固定長文字列)

int8,...,uint8,...,float16、float32、float64、complex64、complex128 (今回は

ビット サイズ)

注: dtype は type とは異なります。

# 用于区分类型和数据类型的 Python 程序。
import numpy as np
 
a = np.array([1])
 
print("type is: ",type(a))
print("dtype is: ",a.dtype)

出力:

type is:

dtype is: int32

構造化配列のデータ型 Object

データ型オブジェクトは、構造化配列の作成に役立ちます。構造化配列は、さまざまなタイプのデータを含む配列です。構造化配列には、フィールドを使用してアクセスできます。

フィールドはオブジェクトに名前を付けるようなものです。構造化配列の場合、dtype オブジェクトも構造化されます。

# 用于演示字段使用的 Python 程序
import numpy as np
 
# 一种结构化数据类型,包含一个 16 字符的字符串(在“name”字段中)和两个 64 位浮点数的子数组(在“grades”字段中)
 
dt = np.dtype([(&#39;name&#39;, np.unicode_, 16),
               (&#39;grades&#39;, np.float64, (2,))])
 
# 具有字段等级的对象的数据类型
print(dt[&#39;grades&#39;])
 
# 具有字段名称的对象的数据类型
print(dt[&#39;name&#39;])

出力:

('
# Python 程序演示了数据类型对象与结构化数组的使用。
import numpy as np
 
dt = np.dtype([(&#39;name&#39;, np.unicode_, 16),
               (&#39;grades&#39;, np.float64, (2,))])
 
# x 是一个包含学生姓名和分数的结构化数组。
# 学生姓名的数据类型是np.unicode_,分数的数据类型是np.float(64)
x = np.array([(&#39;Sarah&#39;, (8.0, 7.0)),
              (&#39;John&#39;, (6.0, 7.0))], dtype=dt)
 
print(x[1])
 
print("Grades of John are: ", x[1][&#39;grades&#39;])
print("Names are: ", x[&#39;name&#39;])

出力:

##('John', [ 6., 7.])
ジョンの等級は次のとおりです: [ 6. 7.]

名前は次のとおりです: ['サラ' ' John']

[関連する推奨事項:
Python3 ビデオ チュートリアル

]

以上がPython NumPy チュートリアルのデータ型オブジェクトの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は脚本之家で複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
Pythonの学習:2時間の毎日の研究で十分ですか?Pythonの学習:2時間の毎日の研究で十分ですか?Apr 18, 2025 am 12:22 AM

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Web開発用のPython:主要なアプリケーションWeb開発用のPython:主要なアプリケーションApr 18, 2025 am 12:20 AM

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化

Python vs. C:パフォーマンスと効率の探索Python vs. C:パフォーマンスと効率の探索Apr 18, 2025 am 12:20 AM

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Python in Action:実世界の例Python in Action:実世界の例Apr 18, 2025 am 12:18 AM

Pythonの実際のアプリケーションには、データ分析、Web開発、人工知能、自動化が含まれます。 1)データ分析では、PythonはPandasとMatplotlibを使用してデータを処理および視覚化します。 2)Web開発では、DjangoおよびFlask FrameworksがWebアプリケーションの作成を簡素化します。 3)人工知能の分野では、TensorflowとPytorchがモデルの構築と訓練に使用されます。 4)自動化に関しては、ファイルのコピーなどのタスクにPythonスクリプトを使用できます。

Pythonの主な用途:包括的な概要Pythonの主な用途:包括的な概要Apr 18, 2025 am 12:18 AM

Pythonは、データサイエンス、Web開発、自動化スクリプトフィールドで広く使用されています。 1)データサイエンスでは、PythonはNumpyやPandasなどのライブラリを介してデータ処理と分析を簡素化します。 2)Web開発では、DjangoおよびFlask Frameworksにより、開発者はアプリケーションを迅速に構築できます。 3)自動化されたスクリプトでは、Pythonのシンプルさと標準ライブラリが理想的になります。

Pythonの主な目的:柔軟性と使いやすさPythonの主な目的:柔軟性と使いやすさApr 17, 2025 am 12:14 AM

Pythonの柔軟性は、マルチパラダイムサポートと動的タイプシステムに反映されていますが、使いやすさはシンプルな構文とリッチ標準ライブラリに由来しています。 1。柔軟性:オブジェクト指向、機能的および手続き的プログラミングをサポートし、動的タイプシステムは開発効率を向上させます。 2。使いやすさ:文法は自然言語に近く、標準的なライブラリは幅広い機能をカバーし、開発プロセスを簡素化します。

Python:汎用性の高いプログラミングの力Python:汎用性の高いプログラミングの力Apr 17, 2025 am 12:09 AM

Pythonは、初心者から上級開発者までのすべてのニーズに適した、そのシンプルさとパワーに非常に好まれています。その汎用性は、次のことに反映されています。1)学習と使用が簡単、シンプルな構文。 2)Numpy、Pandasなどの豊富なライブラリとフレームワーク。 3)さまざまなオペレーティングシステムで実行できるクロスプラットフォームサポート。 4)作業効率を向上させるためのスクリプトおよび自動化タスクに適しています。

1日2時間でPythonを学ぶ:実用的なガイド1日2時間でPythonを学ぶ:実用的なガイドApr 17, 2025 am 12:05 AM

はい、1日2時間でPythonを学びます。 1.合理的な学習計画を作成します。2。適切な学習リソースを選択します。3。実践を通じて学んだ知識を統合します。これらの手順は、短時間でPythonをマスターするのに役立ちます。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境