この記事では、Python に関する関連知識を提供します。主に、numpy の基本データ型、numpy カスタム複合データ型、日付データ型を保存する ndarray の使用法など、numpy データ型に関連する問題を整理します。 . 見ていきましょう、皆さんの参考になれば幸いです。
[関連する推奨事項: Python3 ビデオ チュートリアル ]
1. numpy の基本データタイプ
タイプ名 | タイプインジケーター |
---|---|
ブール値 | bool |
符号付き整数型 | int8 / int16 / int32 / int64 |
符号なし整数型 | uint8 / uint16 / uint32 / uint64 |
Float 型 | float16 / float32 / float64 |
複合型 | complex64 / complex128 |
str、各文字は32ビットUnicodeエンコードで表されます |
2. numpy カスタム複合データ型オブジェクト型を ndarray に保存したい場合は、numpy が推奨します
保存にはタプルを使用するオブジェクトの属性フィールド値を取得し、タプルを ndarray に追加します。ndarray は、これらのデータの処理を容易にする構文を提供します。
import numpy as np data = [ ('zs', [99, 98, 90], 17), ('ls', [95, 95, 92], 16), ('ww', [97, 92, 91], 18) ] # 姓名 2 个字符 # 3 个 int32 类型的成绩 # 1 个 int32 类型的年龄 arr = np.array(data, dtype='2str, 3int32, int32') print(arr) print(arr.dtype) # 可以通过索引访问 print(arr[0], arr[0][2])
データ量が多い場合、上記の方法はデータアクセスに不便です。ndarray は、
辞書またはリスト の形式で定義できるデータ型と列の別名を提供します。データにアクセスするときは、添字インデックスまたは列名を使用してデータにアクセスできます。
import numpy as np data = [ ('zs', [99, 98, 90], 17), ('ls', [95, 95, 92], 16), ('ww', [97, 92, 91], 18)]# 采用字典定义列名和元素的数据类型arr = np.array(data, dtype={ # 设置每列的别名 'names': ['name', 'scores', 'age'], # 设置每列数据元素的数据类型 'formats': ['2str', '3int32', 'int32']})print(arr, arr[0]['age'])# 采用列表定义列名和元素的数据类型arr = np.array(data, dtype=[ # 第一列 ('name', 'str', 2), # 第二列 ('scores', 'int32', 3), # 第三列 ('age', 'int32', 1)])print(arr, arr[1]['scores'])# 直接访问数组的一列print(arr['scores'])
3. ndarray を使用して日付データ型を保存します
import numpy as np
dates = [
'2011',
'2011-02',
'2011-02-03',
'2011-04-01 10:10:10'
]
ndates = np.array(dates)
print(ndates, ndates.dtype)
# 数据类型为日期类型,采用 64 位二进制进行存储,D 表示日期精确到天
ndates = ndates.astype('datetime64[D]')
print(ndates, ndates.dtype)
# 日期运算
print(ndates[-1] - ndates[0])
1. 日付文字列は4. 型文字コード(データ型の略称)numpyは処理する型文字コードを提供します。データ型をより便利に。2011/11/11
をサポートしておらず、日付を区切るためのスペースの使用は
2011 11 11をサポートしていませんが、
2011-11 がサポートされています。 -112. 日付と時刻を区切るにはスペースが必要です。
2011-04-01 10:10:103 . 時刻の記述形式
10: 10:10
タイプインジケータ | 文字コード | |
---|---|---|
? | 符号付き整数型 | |
i1 / i2 / i4 / i8 | 符号なし整数型 | |
u1 / u2 / u4 / u8 | ##浮動小数点型 | |
f2 / f4 / f8 | 複合型 | |
c8 / c16 | 文字型 | |
Date | datatime64 | |
5. Case
フィールドを選択し、ndarray を使用してデータを保存します。
import numpy as np
datas = [
(0, '4室1厅', 298.79, 2598, 86951),
(1, '3室2厅', 154.62, 1000, 64675),
(2, '3室2厅', 177.36, 1200, 67659),]arr = np.array(datas, dtype={
'names': ['index', 'housetype', 'square', 'totalPrice', 'unitPrice'],
'formats': ['u1', '4U', 'f4', 'i4', 'i4']})print(arr)print(arr.dtype)# 计算 totalPrice 的均值sum_totalPrice = sum(arr['totalPrice'])print(sum_totalPrice/3)
[関連する推奨事項:
]
以上がPython データ型の概要 - numpyの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

slicingapythonlistisdoneusingtheyntaxlist [start:stop:step] .hore'showitworks:1)startisthe indexofthefirstelementtoinclude.2)spotisthe indexofthefirmenttoeexclude.3)staptistheincrementbetbetinelements

numpyallows forvariousoperationsonarrays:1)basicarithmeticlikeaddition、減算、乗算、および分割; 2)AdvancedperationssuchasmatrixMultiplication;

Arraysinpython、特にnumpyandpandas、aresentialfordataanalysis、offeringspeedandeficiency.1)numpyarraysenable numpyarraysenable handling forlaredatasents andcomplexoperationslikemoverages.2)Pandasextendsnumpy'scapabivitieswithdataframesfortruc

listsandnumpyarraysinpythonhavedifferentmemoryfootprints:listsaremoreflexiblellessmemory-efficient、whileenumpyarraysaraysareoptimizedfornumericaldata.1)listsstorereferencesto objects、with whowedaround64byteson64-bitedatigu

toensurepythonscriptsbehaveCorrectlyAcrossDevelosment、staging、and Production、usetheseStrategies:1)環境variablesforsimplestetings、2)configurationfilesforcomplexsetups、and3)dynamicloadingforadaptability.eachtododododododofersuniquebentandrequiresca

Pythonリストスライスの基本的な構文はリストです[start:stop:step]。 1.STARTは最初の要素インデックス、2。ストップは除外された最初の要素インデックスであり、3.ステップは要素間のステップサイズを決定します。スライスは、データを抽出するためだけでなく、リストを変更および反転させるためにも使用されます。

ListSoutPerformArraysIn:1)ダイナミシジョンアンドフレーケンティオン/削除、2)ストーリングヘテロゼンダタ、および3)メモリ効率の装飾、ButmayhaveslightPerformancostsinceNASOPERATIONS。

toconvertapythonarraytoalist、usetheList()constructororageneratorexpression.1)importhearraymoduleandcreateanarray.2)useList(arr)または[xforxinarr] toconvertoalistは、largedatatessを変えることを伴うものです。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

ドリームウィーバー CS6
ビジュアル Web 開発ツール

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

メモ帳++7.3.1
使いやすく無料のコードエディター

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









