検索
ホームページデータベースmysql チュートリアルmysqlで2つのテーブルをクエリする方法

mysqlで2つのテーブルをクエリする方法

Dec 07, 2021 am 10:51 AM
mysql複数テーブルのクエリ

2 つのテーブルをクエリする方法: 1. SELECT ステートメントと "CROSS JOIN" キーワードを使用して、クロス結合クエリを実行します。 2. SELECT ステートメントと "INNER JOIN" キーワードを使用して、内部結合クエリを実行します。 ; 3. SELECT ステートメントと「OUTER JOIN」キーワードを使用して、外部結合クエリを実行します。

mysqlで2つのテーブルをクエリする方法

このチュートリアルの動作環境: Windows7 システム、mysql8 バージョン、Dell G3 コンピューター。

リレーショナル データベースではテーブルが関連付けられているため、実際のアプリケーションでは複数テーブルのクエリがよく使用されます。マルチテーブル クエリは、2 つ以上のテーブルを同時にクエリします。

MySQL では、複数テーブルのクエリには主にクロス結合、内部結合、外部結合が含まれます。

MySQL クロス結合

クロス結合 (CROSS JOIN) は、通常、結合されたテーブルのデカルト積を返すために使用されます。

クロスコネクトの構文形式は次のとおりです。

SELECT <字段名> FROM <表1> CROSS JOIN <表2> [WHERE子句]

または

SELECT <字段名> FROM <表1>, <表2> [WHERE子句]

構文の説明は次のとおりです。

  • フィールド名: クエリ対象のフィールドの名前。

  • : 相互接続が必要なテーブルの名前。

  • WHERE 句: 相互接続のクエリ条件を設定するために使用されます。

注: 複数のテーブルをクロス結合する場合は、FROM の後に CROSS JOIN または , を連続して使用します。上記 2 つの構文の戻り結果は同じですが、最初の構文が公式に推奨されている標準的な記述方法です。

接続したテーブル間に関係がない場合は、WHERE句を省略しますが、このとき返される結果は2つのテーブルのデカルト積となり、返される結果の数はその乗算になります。 2 つのテーブルのデータ行。各テーブルが 1000 行ある場合、返される結果の数は 1000×1000 = 1000000 行となり、データ量が非常に膨大になることに注意してください。

例:

学生情報テーブルと科目情報テーブルをクエリし、デカルト積を取得します。

学生情報テーブルと科目テーブル間の相互接続後の実行結果の観察を容易にするために、最初にこれら 2 つのテーブルのデータを個別にクエリし、次に相互接続クエリを実行します。

1) tb_students_info テーブルのデータをクエリします。SQL ステートメントと実行結果は次のとおりです:

mysql> SELECT * FROM tb_students_info;
+----+--------+------+------+--------+-----------+
| id | name   | age  | sex  | height | course_id |
+----+--------+------+------+--------+-----------+
|  1 | Dany   |   25 | 男   |    160 |         1 |
|  2 | Green  |   23 | 男   |    158 |         2 |
|  3 | Henry  |   23 | 女   |    185 |         1 |
|  4 | Jane   |   22 | 男   |    162 |         3 |
|  5 | Jim    |   24 | 女   |    175 |         2 |
|  6 | John   |   21 | 女   |    172 |         4 |
|  7 | Lily   |   22 | 男   |    165 |         4 |
|  8 | Susan  |   23 | 男   |    170 |         5 |
|  9 | Thomas |   22 | 女   |    178 |         5 |
| 10 | Tom    |   23 | 女   |    165 |         5 |
+----+--------+------+------+--------+-----------+
10 rows in set (0.00 sec)

2) tb_course テーブルのデータをクエリします。SQL ステートメントと実行結果は次のとおりです。

mysql> SELECT * FROM tb_course;
+----+-------------+
| id | course_name |
+----+-------------+
|  1 | Java        |
|  2 | MySQL       |
|  3 | Python      |
|  4 | Go          |
|  5 | C++         |
+----+-------------+
5 rows in set (0.00 sec)

3) CROSS JOIN を使用して 2 つのテーブルのデカルト積をクエリします。SQL ステートメントと実行結果は次のとおりです:

mysql> SELECT * FROM tb_course CROSS JOIN tb_students_info;
+----+-------------+----+--------+------+------+--------+-----------+
| id | course_name | id | name   | age  | sex  | height | course_id |
+----+-------------+----+--------+------+------+--------+-----------+
|  1 | Java        |  1 | Dany   |   25 | 男   |    160 |         1 |
|  2 | MySQL       |  1 | Dany   |   25 | 男   |    160 |         1 |
|  3 | Python      |  1 | Dany   |   25 | 男   |    160 |         1 |
|  4 | Go          |  1 | Dany   |   25 | 男   |    160 |         1 |
|  5 | C++         |  1 | Dany   |   25 | 男   |    160 |         1 |
|  1 | Java        |  2 | Green  |   23 | 男   |    158 |         2 |
|  2 | MySQL       |  2 | Green  |   23 | 男   |    158 |         2 |
|  3 | Python      |  2 | Green  |   23 | 男   |    158 |         2 |
|  4 | Go          |  2 | Green  |   23 | 男   |    158 |         2 |
|  5 | C++         |  2 | Green  |   23 | 男   |    158 |         2 |
|  1 | Java        |  3 | Henry  |   23 | 女   |    185 |         1 |
|  2 | MySQL       |  3 | Henry  |   23 | 女   |    185 |         1 |
|  3 | Python      |  3 | Henry  |   23 | 女   |    185 |         1 |
|  4 | Go          |  3 | Henry  |   23 | 女   |    185 |         1 |
|  5 | C++         |  3 | Henry  |   23 | 女   |    185 |         1 |
|  1 | Java        |  4 | Jane   |   22 | 男   |    162 |         3 |
|  2 | MySQL       |  4 | Jane   |   22 | 男   |    162 |         3 |
|  3 | Python      |  4 | Jane   |   22 | 男   |    162 |         3 |
|  4 | Go          |  4 | Jane   |   22 | 男   |    162 |         3 |
|  5 | C++         |  4 | Jane   |   22 | 男   |    162 |         3 |
|  1 | Java        |  5 | Jim    |   24 | 女   |    175 |         2 |
|  2 | MySQL       |  5 | Jim    |   24 | 女   |    175 |         2 |
|  3 | Python      |  5 | Jim    |   24 | 女   |    175 |         2 |
|  4 | Go          |  5 | Jim    |   24 | 女   |    175 |         2 |
|  5 | C++         |  5 | Jim    |   24 | 女   |    175 |         2 |
|  1 | Java        |  6 | John   |   21 | 女   |    172 |         4 |
|  2 | MySQL       |  6 | John   |   21 | 女   |    172 |         4 |
|  3 | Python      |  6 | John   |   21 | 女   |    172 |         4 |
|  4 | Go          |  6 | John   |   21 | 女   |    172 |         4 |
|  5 | C++         |  6 | John   |   21 | 女   |    172 |         4 |
|  1 | Java        |  7 | Lily   |   22 | 男   |    165 |         4 |
|  2 | MySQL       |  7 | Lily   |   22 | 男   |    165 |         4 |
|  3 | Python      |  7 | Lily   |   22 | 男   |    165 |         4 |
|  4 | Go          |  7 | Lily   |   22 | 男   |    165 |         4 |
|  5 | C++         |  7 | Lily   |   22 | 男   |    165 |         4 |
|  1 | Java        |  8 | Susan  |   23 | 男   |    170 |         5 |
|  2 | MySQL       |  8 | Susan  |   23 | 男   |    170 |         5 |
|  3 | Python      |  8 | Susan  |   23 | 男   |    170 |         5 |
|  4 | Go          |  8 | Susan  |   23 | 男   |    170 |         5 |
|  5 | C++         |  8 | Susan  |   23 | 男   |    170 |         5 |
|  1 | Java        |  9 | Thomas |   22 | 女   |    178 |         5 |
|  2 | MySQL       |  9 | Thomas |   22 | 女   |    178 |         5 |
|  3 | Python      |  9 | Thomas |   22 | 女   |    178 |         5 |
|  4 | Go          |  9 | Thomas |   22 | 女   |    178 |         5 |
|  5 | C++         |  9 | Thomas |   22 | 女   |    178 |         5 |
|  1 | Java        | 10 | Tom    |   23 | 女   |    165 |         5 |
|  2 | MySQL       | 10 | Tom    |   23 | 女   |    165 |         5 |
|  3 | Python      | 10 | Tom    |   23 | 女   |    165 |         5 |
|  4 | Go          | 10 | Tom    |   23 | 女   |    165 |         5 |
|  5 | C++         | 10 | Tom    |   23 | 女   |    165 |         5 |
+----+-------------+----+--------+------+------+--------+-----------+
50 rows in set (0.00 sec)

実行結果からわかります。 tb_course テーブルと tb_students_info テーブルの相互結合クエリの後、50 個の項目が返されたことがわかります。ご想像のとおり、テーブルに大量のデータがある場合、得られる実行結果は非常に長くなり、得られる実行結果はあまり意味がありません。したがって、クロス接続による複数テーブルのクエリのこの方法は一般的には使用されず、この種のクエリは避けるようにする必要があります。

MySQL 内部接続

内部 JOIN は主に、接続条件を設定することでクエリ結果から特定のデータを削除します。簡単に言うと、条件式はクロスコネクト内の特定のデータ行を削除するために使用されます。

内部結合では、INNER JOIN キーワードを使用して 2 つのテーブルを接続し、ON 句を使用して接続条件を設定します。結合条件がない場合、INNER JOINCROSS JOIN は構文的に同等であり、交換可能です。

内部接続の構文形式は次のとおりです:

SELECT <字段名> FROM <表1> INNER JOIN <表2> [ON子句]

構文の説明は次のとおりです:

  • フィールド名: フィールドの名前尋ねられること。

  • : 内部結合が必要なテーブルの名前。

  • INNER JOIN: INNER キーワードは内部結合では省略でき、JOIN キーワードのみが使用されます。

  • ON 句: 内部結合の接続条件を設定するために使用されます。

INNER JOIN では、WHERE 句を使用して接続条件を指定することもできますが、INNER JOIN ... ON 構文は公式の標準的な記述方法であり、WHERE 句は場合によってはクエリのパフォーマンスに影響します。

複数のテーブルを接続する場合は、FROM の後に INNER JOIN または JOIN を続けて使用します。

内部結合では、2 つ以上のテーブルをクエリできます。皆様に理解を深めていただくために、当面は 2 つのテーブル間の接続クエリについてのみ説明します。

例:

mysql> SELECT s.name,c.course_name FROM tb_students_info s INNER JOIN tb_course c 
    -> ON s.course_id = c.id;
+--------+-------------+
| name   | course_name |
+--------+-------------+
| Dany   | Java        |
| Green  | MySQL       |
| Henry  | Java        |
| Jane   | Python      |
| Jim    | MySQL       |
| John   | Go          |
| Lily   | Go          |
| Susan  | C++         |
| Thomas | C++         |
| Tom    | C++         |
+--------+-------------+
10 rows in set (0.00 sec)

ここのクエリ文では、2 つのテーブル間の関係を INNER JOIN で指定し、接続の条件を ON 句で指定しています。

注: 複数のテーブルをクエリする場合は、SELECT ステートメントの後にフィールドがどのテーブルからのものであるかを指定する必要があります。そのため、複数のテーブルをクエリする場合、SELECT文以降の書き方はテーブル名.列名となります。さらに、テーブル名が非常に長い場合は、テーブルの別名を設定して、テーブルの別名と列名を SELECT ステートメントの直後に記述することもできます。

MySQL 外部結合

内部結合のクエリ結果は、接続条件を満たすすべてのレコードであり、外部結合は最初に分割されます。接続されたテーブルはベース テーブルと参照テーブルであり、ベース テーブルをベースとして使用して、条件を満たすレコードと条件を満たさないレコードを返します。

外连接可以分为左外连接和右外连接,下面根据实例分别介绍左外连接和右外连接。

左连接

左外连接又称为左连接,使用 LEFT OUTER JOIN 关键字连接两个表,并使用 ON 子句来设置连接条件。

左连接的语法格式如下:

SELECT <字段名> FROM <表1> LEFT OUTER JOIN <表2> <ON子句>

语法说明如下。

  • 字段名:需要查询的字段名称。

  • :需要左连接的表名。

  • LEFT OUTER JOIN:左连接中可以省略 OUTER 关键字,只使用关键字 LEFT JOIN。

  • ON 子句:用来设置左连接的连接条件,不能省略。

上述语法中,“表1”为基表,“表2”为参考表。左连接查询时,可以查询出“表1”中的所有记录和“表2”中匹配连接条件的记录。如果“表1”的某行在“表2”中没有匹配行,那么在返回结果中,“表2”的字段值均为空值(NULL)。

示例:

在进行左连接查询之前,我们先查看 tb_course 和 tb_students_info 两张表中的数据。SQL 语句和运行结果如下。

mysql> SELECT * FROM tb_course;
+----+-------------+
| id | course_name |
+----+-------------+
|  1 | Java        |
|  2 | MySQL       |
|  3 | Python      |
|  4 | Go          |
|  5 | C++         |
|  6 | HTML        |
+----+-------------+
6 rows in set (0.00 sec)


mysql> SELECT * FROM tb_students_info;
+----+--------+------+------+--------+-----------+
| id | name   | age  | sex  | height | course_id |
+----+--------+------+------+--------+-----------+
|  1 | Dany   |   25 | 男   |    160 |         1 |
|  2 | Green  |   23 | 男   |    158 |         2 |
|  3 | Henry  |   23 | 女   |    185 |         1 |
|  4 | Jane   |   22 | 男   |    162 |         3 |
|  5 | Jim    |   24 | 女   |    175 |         2 |
|  6 | John   |   21 | 女   |    172 |         4 |
|  7 | Lily   |   22 | 男   |    165 |         4 |
|  8 | Susan  |   23 | 男   |    170 |         5 |
|  9 | Thomas |   22 | 女   |    178 |         5 |
| 10 | Tom    |   23 | 女   |    165 |         5 |
| 11 | LiMing |   22 | 男   |    180 |         7 |
+----+--------+------+------+--------+-----------+
11 rows in set (0.00 sec)

在 tb_students_info 表和 tb_course 表中查询所有学生姓名和相对应的课程名称,包括没有课程的学生,SQL 语句和运行结果如下。

mysql> SELECT s.name,c.course_name FROM tb_students_info s LEFT OUTER JOIN tb_course c 
    -> ON s.`course_id`=c.`id`;
+--------+-------------+
| name   | course_name |
+--------+-------------+
| Dany   | Java        |
| Henry  | Java        |
| NULL   | Java        |
| Green  | MySQL       |
| Jim    | MySQL       |
| Jane   | Python      |
| John   | Go          |
| Lily   | Go          |
| Susan  | C++         |
| Thomas | C++         |
| Tom    | C++         |
| LiMing | NULL        |
+--------+-------------+
12 rows in set (0.00 sec)

可以看到,运行结果显示了 12 条记录,name 为 LiMing 的学生目前没有课程,因为对应的 tb_course 表中没有该学生的课程信息,所以该条记录只取出了 tb_students_info 表中相应的值,而从 tb_course 表中取出的值为 NULL。

右连接

右外连接又称为右连接,右连接是左连接的反向连接。使用 RIGHT OUTER JOIN 关键字连接两个表,并使用 ON 子句来设置连接条件。

右连接的语法格式如下:

SELECT <字段名> FROM <表1> RIGHT OUTER JOIN <表2> <ON子句>

语法说明如下。

  • 字段名:需要查询的字段名称。

  • :需要右连接的表名。

  • RIGHT OUTER JOIN:右连接中可以省略 OUTER 关键字,只使用关键字 RIGHT JOIN。

  • ON 子句:用来设置右连接的连接条件,不能省略。

与左连接相反,右连接以“表2”为基表,“表1”为参考表。右连接查询时,可以查询出“表2”中的所有记录和“表1”中匹配连接条件的记录。如果“表2”的某行在“表1”中没有匹配行,那么在返回结果中,“表1”的字段值均为空值(NULL)。

示例:

在 tb_students_info 表和 tb_course 表中查询所有课程,包括没有学生的课程,SQL 语句和运行结果如下。

mysql> SELECT s.name,c.course_name FROM tb_students_info s RIGHT OUTER JOIN tb_course c 
    -> ON s.`course_id`=c.`id`;
+--------+-------------+
| name   | course_name |
+--------+-------------+
| Dany   | Java        |
| Green  | MySQL       |
| Henry  | Java        |
| Jane   | Python      |
| Jim    | MySQL       |
| John   | Go          |
| Lily   | Go          |
| Susan  | C++         |
| Thomas | C++         |
| Tom    | C++         |
| NULL   | HTML        |
+--------+-------------+
11 rows in set (0.00 sec)

可以看到,结果显示了 11 条记录,名称为 HTML 的课程目前没有学生,因为对应的 tb_students_info 表中并没有该学生的信息,所以该条记录只取出了 tb_course 表中相应的值,而从 tb_students_info 表中取出的值为 NULL。

多个表左/右连接时,在 ON 子句后连续使用 LEFT/RIGHT OUTER JOIN 或 LEFT/RIGHT JOIN 即可。

使用外连接查询时,一定要分清需要查询的结果,是需要显示左表的全部记录还是右表的全部记录,然后选择相应的左连接和右连接。

【相关推荐:mysql视频教程

以上がmysqlで2つのテーブルをクエリする方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
MySQLでビューを使用することの限界は何ですか?MySQLでビューを使用することの限界は何ですか?May 14, 2025 am 12:10 AM

mysqlviewshavelimitations:1)supportallsqloperations、制限、dataManipulationswithjoinsorubqueries.2)それらは、特にパフォーマンス、特にパルフェクソルラージャターセット

MySQLデータベースのセキュリティ:ユーザーの追加と特権の付与MySQLデータベースのセキュリティ:ユーザーの追加と特権の付与May 14, 2025 am 12:09 AM

reperusermanmanagementInmysqliscialforenhancingsecurationsinginuring databaseaperation.1)usecreateusertoaddusers、指定connectionsourcewith@'localhost'or@'% '。

MySQLで使用できるトリガーの数にどのような要因がありますか?MySQLで使用できるトリガーの数にどのような要因がありますか?May 14, 2025 am 12:08 AM

mysqldoes notimposeahardlimitontriggers、しかしpracticalfactorsdeTerminetheireffectiveuse:1)serverconufigurationStriggermanagement; 2)complentiggersincreaseSystemload;

mysql:Blobを保管しても安全ですか?mysql:Blobを保管しても安全ですか?May 14, 2025 am 12:07 AM

はい、それはssafetostoreblobdatainmysql、butonsiderheSeCactors:1)Storagespace:blobscanconsumesificantspace.2)パフォーマンス:パフォーマンス:大規模なドゥエットブロブスメイズ階下3)backupandrecized recized recized recize

MySQL:PHP Webインターフェイスを介してユーザーを追加しますMySQL:PHP Webインターフェイスを介してユーザーを追加しますMay 14, 2025 am 12:04 AM

PHP Webインターフェイスを介してMySQLユーザーを追加すると、MySQLI拡張機能を使用できます。手順は次のとおりです。1。MySQLデータベースに接続し、MySQLI拡張機能を使用します。 2。ユーザーを作成し、CreateUserステートメントを使用し、パスワード()関数を使用してパスワードを暗号化します。 3. SQLインジェクションを防ぎ、MySQLI_REAL_ESCAPE_STRING()関数を使用してユーザー入力を処理します。 4.新しいユーザーに権限を割り当て、助成金ステートメントを使用します。

MySQL:BLOBおよびその他のNO-SQLストレージ、違いは何ですか?MySQL:BLOBおよびその他のNO-SQLストレージ、違いは何ですか?May 13, 2025 am 12:14 AM

mysql'sblobissuitable forstoringbinarydatawithinarationaldatabase、whileenosqloptionslikemongodb、redis、andcassandraofferferulesions forunstructureddata.blobissimplerbutcanslowdowdowd withwithdata

MySQLユーザーの追加:構文、オプション、セキュリティのベストプラクティスMySQLユーザーの追加:構文、オプション、セキュリティのベストプラクティスMay 13, 2025 am 12:12 AM

toaddauserinmysql、使用:createuser'username '@' host'identifidedby'password '; here'showtodoitsely:1)chosehostcarefilytoconを選択しますTrolaccess.2)setResourcelimitslikemax_queries_per_hour.3)usestrong、uniquasswords.4)endforcessl/tlsconnectionswith

MySQL:文字列データ型の一般的な間違いを回避する方法MySQL:文字列データ型の一般的な間違いを回避する方法May 13, 2025 am 12:09 AM

toavoidcommonMonmistakeswithStringDatatypesinmysql、undultingStringTypenuste、choosetherightType、andManageEncodingandCollat​​ionsEttingtingive.1)U​​secharforfixed-LengthStrings、Varcharforaible Length、AndText/Blobforlardata.2)setCurrectCherts

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター

SublimeText3 英語版

SublimeText3 英語版

推奨: Win バージョン、コードプロンプトをサポート!

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

mPDF

mPDF

mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

Dreamweaver Mac版

Dreamweaver Mac版

ビジュアル Web 開発ツール