検索
ホームページバックエンド開発Python チュートリアルビッグデータ分析のためにPythonにインポートできるライブラリはどれですか?

Python でビッグ データ分析を実行するには、次のものが必要です: 1. 高度な数学演算機能を提供する基本クラス ライブラリである NumPy、2. ツールとアルゴリズムに焦点を当てた信頼性の高いクラス ライブラリである SciPy、3. Sci-kit- learn 、機械学習向け; 4. Pandas は、DataFrame 関数を操作するためのツールを提供します。

ビッグデータ分析のためにPythonにインポートできるライブラリはどれですか?

このチュートリアルの動作環境: Windows7 システム、Python3 バージョン、Dell G3 コンピューター。

ビッグデータはあらゆるビジネスコミュニケーションに欠かせない要素になっていると言っても過言ではありません。デスクトップおよびモバイル検索は、前例のない規模で世界中のマーケティング担当者や企業にデータを提供しており、モノのインターネットの出現により、消費できるデータの量は飛躍的に増加します。この消費データは、より適切に顧客をターゲットにし、人々が自社の製品やサービスをどのように利用しているかを理解し、利益を向上させるための情報を収集したいと考えている企業にとって宝の山です。

データを精査し、企業が実際に使用できる結果を見つける役割は、ソフトウェア開発者、データ サイエンティスト、統計学者にあります。ビッグデータ分析を支援するツールは数多くありますが、最も人気のあるツールは Python です。

Python を選ぶ理由

Python の最大の利点は、シンプルで使いやすいことです。この言語は直感的な構文を備えており、強力な多目的言語です。これはビッグデータ分析環境では重要であり、Google、YouTube、Disney、Sony DreamWorks など、多くの企業がすでに社内で Python を使用しています。また、Python はオープンソースであり、データ サイエンス用のライブラリが多数あります。したがって、ビッグ データ市場では Python 開発者が緊急に必要とされており、Python 開発者ではない専門家でもこの言語をかなりの速度で学習できるため、データ分析に費やす時間を最大化し、この言語の学習に費やす時間を最小限に抑えることができます。

データ分析に Python を使用する前に、Continuum.io から Anaconda をダウンロードする必要があります。このパッケージには、Python でデータ サイエンスを行うために必要なすべてが含まれています。欠点は、ダウンロードと更新が 1 つの単位として実行されるため、1 つのライブラリの更新に時間がかかることです。しかし、それだけの価値はあります。必要なツールがすべて揃っているので、苦労する必要はありません。

さて、本当にビッグデータ分析に Python を使用したい場合は、間違いなく Python 開発者になる必要があります。これは、言語をマスターする必要があるという意味ではありませんが、Python の構文を理解し、正規表現を理解し、タプル、文字列、辞書、辞書内包表記、リスト、リスト内包表記とは何かを知る必要があります。それはほんの始まりにすぎません。

さまざまなクラス ライブラリ

Python の基本知識を習得した後は、そのデータ サイエンス クラス ライブラリがどのように機能するのか、どのライブラリが必要なのかを理解する必要があります。ハイライトには、高度な数学演算のための基本ライブラリである NumPy、ツールとアルゴリズムに焦点を当てた堅牢なライブラリである SciPy、機械学習用の Sci-kit-learn、および DataFrame を操作するための関数スイートである Pandas のツールが含まれます。

クラス ライブラリに加えて、Python には最良と認められている統合開発環境 (IDE) がなく、R 言語についても同様であることを知っておく必要があります。したがって、さまざまな IDE を自分で試して、どれが要件をよりよく満たしているかを確認する必要があります。 IPython Notebook、Rodeo、Spyder から始めることをお勧めします。さまざまな IDE と同様、Python も Pygal、Bokeh、Seaborn などのさまざまなデータ視覚化ライブラリを提供します。これらのデータ視覚化ツールの中で最も重要なものは、シンプルで効果的な数値描画ライブラリである Matplotlib です。

これらのライブラリはすべて Anaconda に含まれているため、ダウンロード後に調査して、どのツールの組み合わせがニーズをよりよく満たすかを確認できます。 Python でデータ分析を行う場合、多くの間違いを犯す可能性があるため、注意してください。インストール設定と各ツールに慣れると、Python が市場でビッグ データ分析に最適なプラットフォームの 1 つであることがわかります。

関連する無料学習の推奨事項: Python ビデオ チュートリアル !

以上がビッグデータ分析のためにPythonにインポートできるライブラリはどれですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Python vs. C:重要な違​​いを理解しますPython vs. C:重要な違​​いを理解しますApr 21, 2025 am 12:18 AM

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

Python vs. C:プロジェクトのためにどの言語を選択しますか?Python vs. C:プロジェクトのためにどの言語を選択しますか?Apr 21, 2025 am 12:17 AM

PythonまたはCの選択は、プロジェクトの要件に依存します。1)迅速な開発、データ処理、およびプロトタイプ設計が必要な場合は、Pythonを選択します。 2)高性能、低レイテンシ、および緊密なハードウェアコントロールが必要な場合は、Cを選択します。

Pythonの目標に到達する:毎日2時間のパワーPythonの目標に到達する:毎日2時間のパワーApr 20, 2025 am 12:21 AM

毎日2時間のPython学習を投資することで、プログラミングスキルを効果的に改善できます。 1.新しい知識を学ぶ:ドキュメントを読むか、チュートリアルを見る。 2。練習:コードと完全な演習を書きます。 3。レビュー:学んだコンテンツを統合します。 4。プロジェクトの実践:実際のプロジェクトで学んだことを適用します。このような構造化された学習計画は、Pythonを体系的にマスターし、キャリア目標を達成するのに役立ちます。

2時間の最大化:効果的なPython学習戦略2時間の最大化:効果的なPython学習戦略Apr 20, 2025 am 12:20 AM

2時間以内にPythonを効率的に学習する方法は次のとおりです。1。基本的な知識を確認し、Pythonのインストールと基本的な構文に精通していることを確認します。 2。変数、リスト、関数など、Pythonのコア概念を理解します。 3.例を使用して、基本的および高度な使用をマスターします。 4.一般的なエラーとデバッグテクニックを学習します。 5.リストの概念を使用したり、PEP8スタイルガイドに従ったりするなど、パフォーマンスの最適化とベストプラクティスを適用します。

PythonとCのどちらかを選択:あなたに適した言語PythonとCのどちらかを選択:あなたに適した言語Apr 20, 2025 am 12:20 AM

Pythonは初心者やデータサイエンスに適しており、Cはシステムプログラミングとゲーム開発に適しています。 1. Pythonはシンプルで使いやすく、データサイエンスやWeb開発に適しています。 2.Cは、ゲーム開発とシステムプログラミングに適した、高性能と制御を提供します。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

Python vs. C:プログラミング言語の比較分析Python vs. C:プログラミング言語の比較分析Apr 20, 2025 am 12:14 AM

Pythonはデータサイエンスと迅速な発展により適していますが、Cは高性能およびシステムプログラミングにより適しています。 1. Python構文は簡潔で学習しやすく、データ処理と科学的コンピューティングに適しています。 2.Cには複雑な構文がありますが、優れたパフォーマンスがあり、ゲーム開発とシステムプログラミングでよく使用されます。

1日2時間:Python学習の可能性1日2時間:Python学習の可能性Apr 20, 2025 am 12:14 AM

Pythonを学ぶために1日2時間投資することは可能です。 1.新しい知識を学ぶ:リストや辞書など、1時間で新しい概念を学びます。 2。練習と練習:1時間を使用して、小さなプログラムを書くなどのプログラミング演習を実行します。合理的な計画と忍耐力を通じて、Pythonのコアコンセプトを短時間で習得できます。

Python vs. C:曲線と使いやすさの学習Python vs. C:曲線と使いやすさの学習Apr 19, 2025 am 12:20 AM

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

VSCode Windows 64 ビットのダウンロード

VSCode Windows 64 ビットのダウンロード

Microsoft によって発売された無料で強力な IDE エディター

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

Dreamweaver Mac版

Dreamweaver Mac版

ビジュアル Web 開発ツール

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境