この記事では、Node.js のネットワークとフローについて説明します。関連する知識ポイントには、ibuv でのネットワークの実装、BSD ソケット、UNIX ドメイン プロトコルの使用などが含まれます。それについて一緒に見てみましょう!
[推奨される学習: 「nodejs チュートリアル 」]
この例のソース: http://docs. libuv.org/en/v1.x/guide/networking.html
関連する知識ポイント
- libuv でのネットワークの実装
- libuv ソリューションの受け入れ(EMFILE エラー)
- BSD ソケット
- SOCKADDR_IN
- UNIX ドメイン プロトコルが使用されました。プロセス間で「ファイル記述子」を渡す
例 tcp-echo-server/main.c
libuv は非同期的に使用しますBSD スイートの例ソケット
libuv でのネットワーキングは、BSD ソケット インターフェイスを直接使用することと何ら変わりません。いくつかの点はより単純で、すべてノンブロッキングですが、概念は同じです。さらに、libuv は、BSD ソケット構造を使用したソケットの設定、DNS クエリ、さまざまなソケット パラメータの調整など、煩わしく反復的な低レベルのタスクを抽象化するいくつかの便利な関数も提供します。
int main() { loop = uv_default_loop(); uv_tcp_t server; uv_tcp_init(loop, &server); uv_ip4_addr("0.0.0.0", DEFAULT_PORT, &addr); uv_tcp_bind(&server, (const struct sockaddr*)&addr, 0); int r = uv_listen((uv_stream_t*) &server, DEFAULT_BACKLOG, on_new_connection); if (r) { fprintf(stderr, "Listen error %s\n", uv_strerror(r)); return 1; } return uv_run(loop, UV_RUN_DEFAULT); } void on_new_connection(uv_stream_t *server, int status) { if (status < 0) { fprintf(stderr, "New connection error %s\n", uv_strerror(status)); // error! return; } uv_tcp_t *client = (uv_tcp_t*) malloc(sizeof(uv_tcp_t)); uv_tcp_init(loop, client); if (uv_accept(server, (uv_stream_t*) client) == 0) { uv_read_start((uv_stream_t*) client, alloc_buffer, echo_read); }
同期の例
これは、BSD ソケット を使用した通常の同期の例です。
参考として、次の主な手順をご覧ください。
まず、socket() を呼び出して通信用のエンドポイントを作成し、ソケットのファイル記述子を返します。
次に、bind() を呼び出して、ソケットにアドレスを割り当てます。ソケットがsocket()を使用して作成される場合、使用されるプロトコルのみがソケットに割り当てられ、アドレスは割り当てられません。他のホストからの接続を受け入れる前に、bind() を呼び出してソケットにアドレスを割り当てる必要があります。
ソケットがアドレスにバインドされた後、listen() 関数を呼び出すと、考えられる接続リクエストのリッスンが開始されます。
最後に accept を呼び出し、アプリケーションが他のホストからのデータ ストリームに向かう接続をリッスンすると、イベント (Unix select() システム コールなど) を通じて通知されます。接続は accept() 関数を使用して初期化する必要があります。 accept() は接続ごとに新しいソケットを作成し、リスニング キューから接続を削除します。
int main(void) { struct sockaddr_in stSockAddr; int SocketFD = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP); if(-1 == SocketFD) { perror("can not create socket"); exit(EXIT_FAILURE); } memset(&stSockAddr, 0, sizeof(struct sockaddr_in)); stSockAddr.sin_family = AF_INET; stSockAddr.sin_port = htons(1100); stSockAddr.sin_addr.s_addr = INADDR_ANY; if(-1 == bind(SocketFD,(const struct sockaddr *)&stSockAddr, sizeof(struct sockaddr_in))) { perror("error bind failed"); close(SocketFD); exit(EXIT_FAILURE); } if(-1 == listen(SocketFD, 10)) { perror("error listen failed"); close(SocketFD); exit(EXIT_FAILURE); } for(;;) { int ConnectFD = accept(SocketFD, NULL, NULL); if(0 > ConnectFD) { perror("error accept failed"); close(SocketFD); exit(EXIT_FAILURE); } /* perform read write operations ... */ shutdown(ConnectFD, SHUT_RDWR); close(ConnectFD); } close(SocketFD); return 0; }
uv_tcp_init
main > uv_tcp_init
1. ドメインは検証済みで、次の 3 つである必要があります。タイプ A
- AF_INET は IPv4 ネットワーク プロトコルを表します
- AF_INET6 は IPv6 を表します
- AF_UNSPEC は、指定されたホスト名とサービス名に適した任意のプロトコル ファミリに適したアドレスを表します
2. TCP もストリームの一種です。ストリーム データを初期化するには uv__stream_init を呼び出します
int uv_tcp_init(uv_loop_t* loop, uv_tcp_t* tcp) { return uv_tcp_init_ex(loop, tcp, AF_UNSPEC); } int uv_tcp_init_ex(uv_loop_t* loop, uv_tcp_t* tcp, unsigned int flags) { int domain; /* Use the lower 8 bits for the domain */ domain = flags & 0xFF; if (domain != AF_INET && domain != AF_INET6 && domain != AF_UNSPEC) return UV_EINVAL; if (flags & ~0xFF) return UV_EINVAL; uv__stream_init(loop, (uv_stream_t*)tcp, UV_TCP); ... return 0; }
uv__stream_init
##main > uv_tcp_init > ; uv__stream_initストリーム初期化関数は多くの場所で使用されており、非常に重要でもあります。次の i/o
[libuv ソース コードの学習メモ] スレッド プールと i/o
1 の完全な実装に関するリファレンス。ストリームによって呼び出されるコールバック関数を初期化します- 如 read_cb 函数, 在本例子中 on_new_connection > uv_read_start 函数就会真实的设置该 read_cb 为用户传入的参数 echo_read, 其被调用时机是该 stream 上设置的 io_watcher.fd 有数据写入时, 在事件循环阶段被 epoll 捕获后。
- alloc_cb 函数的调用过程同 read_cb, alloc 类型函数一般是设置当前需要读取的内容长度, 在流数据传输时通常首先会写入本次传输数据的长度, 然后是具体的内容, 主要是为了接收方能够合理的申请内存进行存储。如 grpc, thread-loader 中都有详细的应用。
- close_cb 函数被调用在 stream 数据结束时或者出错时。
- connection_cb 函数如本例子 tcp 流, 当 accept 接收到新连接时被调用。本例子中即为 on_new_connection
- connect_req 结构主要用于 tcp 客户端相关连接回调等数据的挂载使用。
- shutdown_req 结构主要用于流 destroy 时回调等数据的挂载使用。
- accepted_fd 当 accept 接收到新连接时, 存储 accept(SocketFD, NULL, NULL) 返回的 ConnectFD。
- queued_fds 用于保存等待处理的连接, 其主要用于 node cluster 集群 的实现。
// queued_fds 1. 当收到其他进程通过 ipc 写入的数据时, 调用 uv__stream_recv_cmsg 函数 2. uv__stream_recv_cmsg 函数读取到进程传递过来的 fd 引用, 调用 uv__stream_queue_fd 函数保存。 3. queued_fds 被消费主要在 src/stream_wrap.cc LibuvStreamWrap::OnUvRead > AcceptHandle 函数中。
2、其中专门为 loop->emfile_fd 通过 uv__open_cloexec 方法创建一个指向空文件(/dev/null)的 idlefd 文件描述符, 追踪发现原来是解决 accept (EMFILE错误), 下面我们讲 uv__accept 的时候再细说这个 loop->emfile_fd 的妙用。
accept处理连接时,若出现 EMFILE 错误不进行处理,则内核间隔性尝试连接,导致整个网络设计程序崩溃
3、调用 uv__io_init 初始化的该 stream 的 i/o 观察者的回调函数为 uv__stream_io
void uv__stream_init(uv_loop_t* loop, uv_stream_t* stream, uv_handle_type type) { int err; uv__handle_init(loop, (uv_handle_t*)stream, type); stream->read_cb = NULL; stream->alloc_cb = NULL; stream->close_cb = NULL; stream->connection_cb = NULL; stream->connect_req = NULL; stream->shutdown_req = NULL; stream->accepted_fd = -1; stream->queued_fds = NULL; stream->delayed_error = 0; QUEUE_INIT(&stream->write_queue); QUEUE_INIT(&stream->write_completed_queue); stream->write_queue_size = 0; if (loop->emfile_fd == -1) { err = uv__open_cloexec("/dev/null", O_RDONLY); if (err < 0) /* In the rare case that "/dev/null" isn't mounted open "/" * instead. */ err = uv__open_cloexec("/", O_RDONLY); if (err >= 0) loop->emfile_fd = err; } #if defined(__APPLE__) stream->select = NULL; #endif /* defined(__APPLE_) */ uv__io_init(&stream->io_watcher, uv__stream_io, -1); }
uv__open_cloexec
main > uv_tcp_init > uv__stream_init > uv__open_cloexec
同步调用 open 方法拿到了 fd, 也许你会问为啥不像 【libuv 源码学习笔记】线程池与i/o 中调用 uv_fs_open 异步获取 fd, 其实 libuv 中并不全部是异步的实现, 比如当前的例子启动 tcp 服务前的一些初始化, 而不是用户请求过程中发生的任务, 同步也是能接受的。
int uv__open_cloexec(const char* path, int flags) { #if defined(O_CLOEXEC) int fd; fd = open(path, flags | O_CLOEXEC); if (fd == -1) return UV__ERR(errno); return fd; #else /* O_CLOEXEC */ int err; int fd; fd = open(path, flags); if (fd == -1) return UV__ERR(errno); err = uv__cloexec(fd, 1); if (err) { uv__close(fd); return err; } return fd; #endif /* O_CLOEXEC */ }
uv__stream_io
main > uv_tcp_init > uv__stream_init > uv__stream_io
双工流的 i/o 观察者回调函数, 如调用的 stream->connect_req 函数, 其值是例子中 uv_listen 函数的最后一个参数 on_new_connection。
当发生 POLLIN | POLLERR | POLLHUP 事件时: 该 fd 有可读数据时调用 uv__read 函数
当发生 POLLOUT | POLLERR | POLLHUP 事件时: 该 fd 有可读数据时调用 uv__write 函数
static void uv__stream_io(uv_loop_t* loop, uv__io_t* w, unsigned int events) { uv_stream_t* stream; stream = container_of(w, uv_stream_t, io_watcher); assert(stream->type == UV_TCP || stream->type == UV_NAMED_PIPE || stream->type == UV_TTY); assert(!(stream->flags & UV_HANDLE_CLOSING)); if (stream->connect_req) { uv__stream_connect(stream); return; } assert(uv__stream_fd(stream) >= 0); if (events & (POLLIN | POLLERR | POLLHUP)) uv__read(stream); if (uv__stream_fd(stream) == -1) return; /* read_cb closed stream. */ if ((events & POLLHUP) && (stream->flags & UV_HANDLE_READING) && (stream->flags & UV_HANDLE_READ_PARTIAL) && !(stream->flags & UV_HANDLE_READ_EOF)) { uv_buf_t buf = { NULL, 0 }; uv__stream_eof(stream, &buf); } if (uv__stream_fd(stream) == -1) return; /* read_cb closed stream. */ if (events & (POLLOUT | POLLERR | POLLHUP)) { uv__write(stream); uv__write_callbacks(stream); /* Write queue drained. */ if (QUEUE_EMPTY(&stream->write_queue)) uv__drain(stream); } }
uv_ip4_addr
main > uv_ip4_addr
uv_ip4_addr 用于将人类可读的 IP 地址、端口对转换为 BSD 套接字 API 所需的 sockaddr_in 结构。
int uv_ip4_addr(const char* ip, int port, struct sockaddr_in* addr) { memset(addr, 0, sizeof(*addr)); addr->sin_family = AF_INET; addr->sin_port = htons(port); #ifdef SIN6_LEN addr->sin_len = sizeof(*addr); #endif return uv_inet_pton(AF_INET, ip, &(addr->sin_addr.s_addr)); }
uv_tcp_bind
main > uv_tcp_bind
从 uv_ip4_addr 函数的实现, 其实是在 addr 的 sin_family 上面设置值为 AF_INET, 但在 uv_tcp_bind 函数里面却是从 addr 的 sa_family属性上面取的值, 这让 c 初学者的我又陷入了一阵思考 ...
sockaddr_in 和 sockaddr 是并列的结构,指向 sockaddr_in 的结构体的指针也可以指向 sockaddr 的结构体,并代替它。也就是说,你可以使用 sockaddr_in 建立你所需要的信息,然后用 memset 函数初始化就可以了memset((char*)&mysock,0,sizeof(mysock));//初始化
原来是这样, 这里通过强制指针类型转换 const struct sockaddr* addr 达到的目的, 函数的最后调用了 uv__tcp_bind 函数。
int uv_tcp_bind(uv_tcp_t* handle, const struct sockaddr* addr, unsigned int flags) { unsigned int addrlen; if (handle->type != UV_TCP) return UV_EINVAL; if (addr->sa_family == AF_INET) addrlen = sizeof(struct sockaddr_in); else if (addr->sa_family == AF_INET6) addrlen = sizeof(struct sockaddr_in6); else return UV_EINVAL; return uv__tcp_bind(handle, addr, addrlen, flags); }
uv__tcp_bind
main > uv_tcp_bind > uv__tcp_bind
调用 maybe_new_socket, 如果当前未设置 socketfd, 则调用 new_socket 获取
调用 setsockopt 用于为指定的套接字设定一个特定的套接字选项
调用 bind 为一个套接字分配地址。当使用socket()创建套接字后,只赋予其所使用的协议,并未分配地址。
int uv__tcp_bind(uv_tcp_t* tcp, const struct sockaddr* addr, unsigned int addrlen, unsigned int flags) { int err; int on; /* Cannot set IPv6-only mode on non-IPv6 socket. */ if ((flags & UV_TCP_IPV6ONLY) && addr->sa_family != AF_INET6) return UV_EINVAL; err = maybe_new_socket(tcp, addr->sa_family, 0); if (err) return err; on = 1; if (setsockopt(tcp->io_watcher.fd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on))) return UV__ERR(errno); ... errno = 0; if (bind(tcp->io_watcher.fd, addr, addrlen) && errno != EADDRINUSE) { if (errno == EAFNOSUPPORT) return UV_EINVAL; return UV__ERR(errno); } ... }
new_socket
main > uv_tcp_bind > uv__tcp_bind > maybe_new_socket > new_socket
通过 uv__socket 其本质调用 socket 获取到 sockfd
调用 uv__stream_open 设置 stream i/o 观察的 fd 为步骤1 拿到的 sockfd
static int new_socket(uv_tcp_t* handle, int domain, unsigned long flags) { struct sockaddr_storage saddr; socklen_t slen; int sockfd; int err; err = uv__socket(domain, SOCK_STREAM, 0); if (err < 0) return err; sockfd = err; err = uv__stream_open((uv_stream_t*) handle, sockfd, flags); ... return 0; }
uv__stream_open
main > uv_tcp_bind > uv__tcp_bind > maybe_new_socket > new_socket > uv__stream_open
主要用于设置 stream->io_watcher.fd 为参数传入的 fd。
int uv__stream_open(uv_stream_t* stream, int fd, int flags) { #if defined(__APPLE__) int enable; #endif if (!(stream->io_watcher.fd == -1 || stream->io_watcher.fd == fd)) return UV_EBUSY; assert(fd >= 0); stream->flags |= flags; if (stream->type == UV_TCP) { if ((stream->flags & UV_HANDLE_TCP_NODELAY) && uv__tcp_nodelay(fd, 1)) return UV__ERR(errno); /* TODO Use delay the user passed in. */ if ((stream->flags & UV_HANDLE_TCP_KEEPALIVE) && uv__tcp_keepalive(fd, 1, 60)) { return UV__ERR(errno); } } #if defined(__APPLE__) enable = 1; if (setsockopt(fd, SOL_SOCKET, SO_OOBINLINE, &enable, sizeof(enable)) && errno != ENOTSOCK && errno != EINVAL) { return UV__ERR(errno); } #endif stream->io_watcher.fd = fd; return 0; }
uv_listen
main > uv_listen
主要调用了 uv_tcp_listen 函数。
int uv_listen(uv_stream_t* stream, int backlog, uv_connection_cb cb) { int err; err = ERROR_INVALID_PARAMETER; switch (stream->type) { case UV_TCP: err = uv_tcp_listen((uv_tcp_t*)stream, backlog, cb); break; case UV_NAMED_PIPE: err = uv_pipe_listen((uv_pipe_t*)stream, backlog, cb); break; default: assert(0); } return uv_translate_sys_error(err); }
uv_tcp_listen
main > uv_listen > uv_tcp_listen
调用 listen 开始监听可能的连接请求
挂载例子中传入的回调 on_new_connection
暴力改写 i/o 观察者的回调, 在上面的 uv__stream_init 函数中, 通过 uv__io_init 设置了 i/o 观察者的回调为 uv__stream_io, 作为普通的双工流是适用的, 这里 tcp 流直接通过 tcp->io_watcher.cb = uv__server_io 赋值语句设置 i/o 观察者回调为 uv__server_io
调用 uv__io_start 注册 i/o 观察者, 开始监听工作。
int uv_tcp_listen(uv_tcp_t* tcp, int backlog, uv_connection_cb cb) { ... if (listen(tcp->io_watcher.fd, backlog)) return UV__ERR(errno); tcp->connection_cb = cb; tcp->flags |= UV_HANDLE_BOUND; /* Start listening for connections. */ tcp->io_watcher.cb = uv__server_io; uv__io_start(tcp->loop, &tcp->io_watcher, POLLIN); return 0; }
uv__server_io
main > uv_listen > uv_tcp_listen > uv__server_io
tcp 流的 i/o 观察者回调函数
调用 uv__accept, 拿到该连接的 ConnectFD
此时如果出现了上面 uv__stream_init 时说的 accept (EMFILE错误), 则调用 uv__emfile_trick 函数
把步骤1拿到的 ConnectFD 挂载在了 stream->accepted_fd 上面
调用例子中传入的回调 on_new_connection
void uv__server_io(uv_loop_t* loop, uv__io_t* w, unsigned int events) { ... while (uv__stream_fd(stream) != -1) { assert(stream->accepted_fd == -1); err = uv__accept(uv__stream_fd(stream)); if (err < 0) { if (err == UV_EAGAIN || err == UV__ERR(EWOULDBLOCK)) return; /* Not an error. */ if (err == UV_ECONNABORTED) continue; /* Ignore. Nothing we can do about that. */ if (err == UV_EMFILE || err == UV_ENFILE) { err = uv__emfile_trick(loop, uv__stream_fd(stream)); if (err == UV_EAGAIN || err == UV__ERR(EWOULDBLOCK)) break; } stream->connection_cb(stream, err); continue; } UV_DEC_BACKLOG(w) stream->accepted_fd = err; stream->connection_cb(stream, 0); ... }
uv__emfile_trick
main > uv_listen > uv_tcp_listen > uv__server_io > uv__emfile_trick
在上面的 uv__stream_init 函数中, 我们发现 loop 的 emfile_fd 属性上通过 uv__open_cloexec 方法创建一个指向空文件(/dev/null)的 idlefd 文件描述符。
当出现 accept (EMFILE错误)即文件描述符用尽时的错误时
首先将 loop->emfile_fd 文件描述符, 使其能 accept 新连接, 然后我们新连接将其关闭,以使其低于EMFILE的限制。接下来,我们接受所有等待的连接并关闭它们以向客户发出信号,告诉他们我们已经超载了--我们确实超载了,但是我们仍在继续工作。
static int uv__emfile_trick(uv_loop_t* loop, int accept_fd) { int err; int emfile_fd; if (loop->emfile_fd == -1) return UV_EMFILE; uv__close(loop->emfile_fd); loop->emfile_fd = -1; do { err = uv__accept(accept_fd); if (err >= 0) uv__close(err); } while (err >= 0 || err == UV_EINTR); emfile_fd = uv__open_cloexec("/", O_RDONLY); if (emfile_fd >= 0) loop->emfile_fd = emfile_fd; return err; }
on_new_connection
当收到一个新连接, 例子中的 on_new_connection 函数被调用
通过 uv_tcp_init 初始化了一个 tcp 客户端流
调用 uv_accept 函数
void on_new_connection(uv_stream_t *server, int status) { if (status < 0) { fprintf(stderr, "New connection error %s\n", uv_strerror(status)); // error! return; } uv_tcp_t *client = (uv_tcp_t*) malloc(sizeof(uv_tcp_t)); uv_tcp_init(loop, client); if (uv_accept(server, (uv_stream_t*) client) == 0) { uv_read_start((uv_stream_t*) client, alloc_buffer, echo_read); }
uv_accept
on_new_connection > uv_accept
根据不同的协议调用不同的方法, 该例子 tcp 调用 uv__stream_open 方法
uv__stream_open 设置给初始化完成的 client 流设置了 i/o 观察者的 fd。该 fd 即是 uv__server_io 中提到的 ConnectFD 。
int uv_accept(uv_stream_t* server, uv_stream_t* client) { int err; assert(server->loop == client->loop); if (server->accepted_fd == -1) return UV_EAGAIN; switch (client->type) { case UV_NAMED_PIPE: case UV_TCP: err = uv__stream_open(client, server->accepted_fd, UV_HANDLE_READABLE | UV_HANDLE_WRITABLE); if (err) { /* TODO handle error */ uv__close(server->accepted_fd); goto done; } break; case UV_UDP: err = uv_udp_open((uv_udp_t*) client, server->accepted_fd); if (err) { uv__close(server->accepted_fd); goto done; } break; default: return UV_EINVAL; } client->flags |= UV_HANDLE_BOUND; done: /* Process queued fds */ if (server->queued_fds != NULL) { uv__stream_queued_fds_t* queued_fds; queued_fds = server->queued_fds; /* Read first */ server->accepted_fd = queued_fds->fds[0]; /* All read, free */ assert(queued_fds->offset > 0); if (--queued_fds->offset == 0) { uv__free(queued_fds); server->queued_fds = NULL; } else { /* Shift rest */ memmove(queued_fds->fds, queued_fds->fds + 1, queued_fds->offset * sizeof(*queued_fds->fds)); } } else { server->accepted_fd = -1; if (err == 0) uv__io_start(server->loop, &server->io_watcher, POLLIN); } return err; }
uv_read_start
on_new_connection > uv_read_start
开启一个流的监听工作
挂载回调函数 read_cb 为例子中的 echo_read, 当流有数据写入时被调用
挂载回调函数 alloc_cb 为例子中的 alloc_buffer
调用 uv__io_start 函数, 这可是老朋友了, 通常用在 uv__io_init 初始化 i/o 观察者后面, 用于注册 i/o 观察者。
uv_read_start 主要是调用了 uv__read_start 函数。开始了普通流的 i/o 过程。
- 初始化 i/o 观察者在 uv_tcp_init > uv_tcp_init_ex > uv__stream_init > uv__io_init 设置其观察者回调函数为 uv__stream_io
- 注册 i/o 观察者为 uv__io_start 开始监听工作。
int uv__read_start(uv_stream_t* stream, uv_alloc_cb alloc_cb, uv_read_cb read_cb) { assert(stream->type == UV_TCP || stream->type == UV_NAMED_PIPE || stream->type == UV_TTY); /* The UV_HANDLE_READING flag is irrelevant of the state of the tcp - it just * expresses the desired state of the user. */ stream->flags |= UV_HANDLE_READING; /* TODO: try to do the read inline? */ /* TODO: keep track of tcp state. If we've gotten a EOF then we should * not start the IO watcher. */ assert(uv__stream_fd(stream) >= 0); assert(alloc_cb); stream->read_cb = read_cb; stream->alloc_cb = alloc_cb; uv__io_start(stream->loop, &stream->io_watcher, POLLIN); uv__handle_start(stream); uv__stream_osx_interrupt_select(stream); return 0; }
小结
- uv_tcp_init 初始化 TCP Server handle, 其绑定的 fd 为 socket 返回的 socketFd。
- uv_tcp_bind 调用 bind 为套接字分配一个地址
- uv_listen 调用 listen 开始监听可能的连接请求
- uv_accept 调用 accept 去接收一个新连接
- uv_tcp_init 初始化 TCP Client handle, 其绑定的 fd 为 accept 返回的 acceptFd, 剩下的就是一个普通流的读写 i/o 观察。
原文地址:https://juejin.cn/post/6982226661081088036
作者:多小凯
プログラミング関連の知識について詳しくは、プログラミング ビデオをご覧ください。 !
以上がNode.js のネットワークとストリーミングについて話しましょうの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

さまざまなJavaScriptエンジンは、各エンジンの実装原則と最適化戦略が異なるため、JavaScriptコードを解析および実行するときに異なる効果をもたらします。 1。語彙分析:ソースコードを語彙ユニットに変換します。 2。文法分析:抽象的な構文ツリーを生成します。 3。最適化とコンパイル:JITコンパイラを介してマシンコードを生成します。 4。実行:マシンコードを実行します。 V8エンジンはインスタントコンピレーションと非表示クラスを通じて最適化され、Spidermonkeyはタイプ推論システムを使用して、同じコードで異なるパフォーマンスパフォーマンスをもたらします。

現実世界におけるJavaScriptのアプリケーションには、サーバー側のプログラミング、モバイルアプリケーション開発、モノのインターネット制御が含まれます。 2。モバイルアプリケーションの開発は、ReactNativeを通じて実行され、クロスプラットフォームの展開をサポートします。 3.ハードウェアの相互作用に適したJohnny-Fiveライブラリを介したIoTデバイス制御に使用されます。

私はあなたの日常的な技術ツールを使用して機能的なマルチテナントSaaSアプリケーション(EDTECHアプリ)を作成しましたが、あなたは同じことをすることができます。 まず、マルチテナントSaaSアプリケーションとは何ですか? マルチテナントSaaSアプリケーションを使用すると、Singの複数の顧客にサービスを提供できます

この記事では、許可によって保護されたバックエンドとのフロントエンド統合を示し、next.jsを使用して機能的なedtech SaaSアプリケーションを構築します。 FrontEndはユーザーのアクセス許可を取得してUIの可視性を制御し、APIリクエストがロールベースに付着することを保証します

JavaScriptは、現代のWeb開発のコア言語であり、その多様性と柔軟性に広く使用されています。 1)フロントエンド開発:DOM操作と最新のフレームワーク(React、Vue.JS、Angularなど)を通じて、動的なWebページとシングルページアプリケーションを構築します。 2)サーバー側の開発:node.jsは、非ブロッキングI/Oモデルを使用して、高い並行性とリアルタイムアプリケーションを処理します。 3)モバイルおよびデスクトップアプリケーション開発:クロスプラットフォーム開発は、反応および電子を通じて実現され、開発効率を向上させます。

JavaScriptの最新トレンドには、TypeScriptの台頭、最新のフレームワークとライブラリの人気、WebAssemblyの適用が含まれます。将来の見通しは、より強力なタイプシステム、サーバー側のJavaScriptの開発、人工知能と機械学習の拡大、およびIoTおよびEDGEコンピューティングの可能性をカバーしています。

JavaScriptは現代のWeb開発の基礎であり、その主な機能には、イベント駆動型のプログラミング、動的コンテンツ生成、非同期プログラミングが含まれます。 1)イベント駆動型プログラミングにより、Webページはユーザー操作に応じて動的に変更できます。 2)動的コンテンツ生成により、条件に応じてページコンテンツを調整できます。 3)非同期プログラミングにより、ユーザーインターフェイスがブロックされないようにします。 JavaScriptは、Webインタラクション、シングルページアプリケーション、サーバー側の開発で広く使用されており、ユーザーエクスペリエンスとクロスプラットフォーム開発の柔軟性を大幅に改善しています。

Pythonはデータサイエンスや機械学習により適していますが、JavaScriptはフロントエンドとフルスタックの開発により適しています。 1. Pythonは、簡潔な構文とリッチライブラリエコシステムで知られており、データ分析とWeb開発に適しています。 2。JavaScriptは、フロントエンド開発の中核です。 node.jsはサーバー側のプログラミングをサポートしており、フルスタック開発に適しています。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

ドリームウィーバー CS6
ビジュアル Web 開発ツール

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

WebStorm Mac版
便利なJavaScript開発ツール
