Python では、数秒で Dataframe に変換するネストされた JSON が導入されました。
Python チュートリアルこのコラムでは、JSON をネストする方法を紹介します
推奨 (無料): ##Python チュートリアル
API を呼び出すと、
を使用すると、ドキュメント データベースはネストされた JSON
オブジェクトを返します。 Python がネストされた構造内のキーを列に変換しようとすると、
pandas にロードされたデータは、多くの場合次の結果を取得します:
df = pd.DataFrame.from_records(results [“ issues”],columns = [“ key”,“ fields”])説明: ここでの結果は非常に大きくなります。 Dictionary , issues は結果のキーであり、issues の値はネストされた JSON オブジェクト ディクショナリのリストです。JSON のネストされた構造については後で説明します。 問題は、API がネストされた
JSON 構造を返し、注目するキーが実際にオブジェクト内の異なるレベルにあることです。
JSON 構造は次のようになります。
- key: JSON キー、第 1 レベル。
- summary: 第 2 レベルの「フィールド」オブジェクト。
- ステータス名: 第 3 レベルのポジション。
- statusカテゴリ名: 4 番目の入れ子レベルにあります。
JSON 構造内の 4 つの異なるネスト レベルに順番にあります。
{ "expand": "schema,names", "issues": [ { "fields": { "issuetype": { "avatarId": 10300, "description": "", "id": "10005", "name": "New Feature", "subtask": False }, "status": { "description": "A resolution has been taken, and it is awaiting verification by reporter. From here issues are either reopened, or are closed.", "id": "5", "name": "Resolved", "statusCategory": { "colorName": "green", "id": 3, "key": "done", "name": "Done", } }, "summary": "Recovered data collection Defraglar $MFT problem" }, "id": "11861", "key": "CAE-160", }, { "fields": { ... more issues], "maxResults": 5, "startAt": 0, "total": 160 }#あまり良い解決策ではありません
1 つのオプションは、直接コーディングして特定のフィールドを検索する関数を記述することですが、問題は、各埋め込みフィールドをこの関数を呼び出してフィールドを設定し、
DataFrame の新しい列に対して .apply
を呼び出します。 必要なフィールドをいくつか取得するために、まず列のフィールド キーのオブジェクトを抽出します。
df = ( df["fields"] .apply(pd.Series) .merge(df, left_index=True, right_index = True) )
上の表からわかるように、利用できるのは概要のみです。 issuetype、status など。ネストされたオブジェクトにまだ埋もれています。
以下は issuetype の名前を抽出するメソッドです。
# 提取issue type的name到一个新列叫"issue_type" df_issue_type = ( df["issuetype"] .apply(pd.Series) .rename(columns={"name": "issue_type_name"})["issue_type_name"] ) df = df.assign(issue_type_name = df_issue_type)
上記と同様、ネスト レベルが多すぎる場合は、再帰を自分で実装する必要があります。これは、ネストの各レベルで上記のようなメソッドを呼び出して解析し、新しい列に追加する必要があるためです。
プログラミングの基礎が弱い友達にとって、プログラミングの基礎を学ぶのは実はかなり面倒で、特にデータアナリストにとっては、データを活用したいと考えたとき、分析用の構造化データを早く入手したいと考えます。
現在、Dong 兄弟は
pandas 組み込みソリューションを共有しています。
pandas
には、.json_normalize
という素晴らしい組み込み関数があります。
のドキュメントには、半構造化された JSON
データをフラット テーブルに正規化することが記載されています。 前のソリューションのすべてのコードは、この組み込み関数を使用してわずか 3 行で完了できます。手順は非常に簡単で、次の使用法を理解するだけです。
必要なフィールドを決定し、. 記号を使用してネストされたオブジェクトを接続します。
処理したいネストされたリスト (ここでは
results["issues"]) をパラメーターとして .json_normalize
に入力します。 定義した FIELDS リストをフィルタリングします。
FIELDS = ["key", "fields.summary", "fields.issuetype.name", "fields.status.name", "fields.status.statusCategory.name"] df = pd.json_normalize(results["issues"]) df[FIELDS]
はい、とても簡単です。
その他の操作レコード パス
results["issues"]## を渡すことに加えて、上 #リストに加えて、
record_path パラメータを使用して、
JSON オブジェクト内のリストのパスを指定します。
# 使用路径而不是直接用results["issues"] pd.json_normalize(results, record_path="issues")[FIELDS]
カスタム区切り文字sep パラメータを使用して、ネスト構造接続の区切り文字をカスタマイズすることもできます。たとえば、デフォルトの「.」を「-」に置き換えます。下に 。
### 用 "-" 替换默认的 "." FIELDS = ["key", "fields-summary", "fields-issuetype-name", "fields-status-name", "fields-status-statusCategory-name"] pd.json_normalize(results["issues"], sep = "-")[FIELDS]
再帰の制御
各サブオブジェクトを再帰したくない場合は、max_level
パラメーターを使用して、深さ。この場合、statusCategory.name フィールドは
JSON オブジェクトのレベル 4 にあるため、結果の
DataFrame には含まれません。
# 只深入到嵌套第二级 pd.json_normalize(results, record_path="issues", max_level = 2)
以下は、
.json_normalize の pandas 公式ドキュメントの説明です。理解できない場合は、自分で学習してください。今回は、Dong 兄弟が説明します。ここでそれを紹介します。
pandas 公式ドキュメント: https://pandas.pydata.org/pan...
以上がPython では、数秒で Dataframe に変換するネストされた JSON が導入されました。の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

PythonまたはCの選択は、プロジェクトの要件に依存します。1)迅速な開発、データ処理、およびプロトタイプ設計が必要な場合は、Pythonを選択します。 2)高性能、低レイテンシ、および緊密なハードウェアコントロールが必要な場合は、Cを選択します。

毎日2時間のPython学習を投資することで、プログラミングスキルを効果的に改善できます。 1.新しい知識を学ぶ:ドキュメントを読むか、チュートリアルを見る。 2。練習:コードと完全な演習を書きます。 3。レビュー:学んだコンテンツを統合します。 4。プロジェクトの実践:実際のプロジェクトで学んだことを適用します。このような構造化された学習計画は、Pythonを体系的にマスターし、キャリア目標を達成するのに役立ちます。

2時間以内にPythonを効率的に学習する方法は次のとおりです。1。基本的な知識を確認し、Pythonのインストールと基本的な構文に精通していることを確認します。 2。変数、リスト、関数など、Pythonのコア概念を理解します。 3.例を使用して、基本的および高度な使用をマスターします。 4.一般的なエラーとデバッグテクニックを学習します。 5.リストの概念を使用したり、PEP8スタイルガイドに従ったりするなど、パフォーマンスの最適化とベストプラクティスを適用します。

Pythonは初心者やデータサイエンスに適しており、Cはシステムプログラミングとゲーム開発に適しています。 1. Pythonはシンプルで使いやすく、データサイエンスやWeb開発に適しています。 2.Cは、ゲーム開発とシステムプログラミングに適した、高性能と制御を提供します。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

Pythonはデータサイエンスと迅速な発展により適していますが、Cは高性能およびシステムプログラミングにより適しています。 1. Python構文は簡潔で学習しやすく、データ処理と科学的コンピューティングに適しています。 2.Cには複雑な構文がありますが、優れたパフォーマンスがあり、ゲーム開発とシステムプログラミングでよく使用されます。

Pythonを学ぶために1日2時間投資することは可能です。 1.新しい知識を学ぶ:リストや辞書など、1時間で新しい概念を学びます。 2。練習と練習:1時間を使用して、小さなプログラムを書くなどのプログラミング演習を実行します。合理的な計画と忍耐力を通じて、Pythonのコアコンセプトを短時間で習得できます。

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境
