ホームページ  >  記事  >  バックエンド開発  >  Python のフック関数を素早くマスターする

Python のフック関数を素早くマスターする

coldplay.xixi
coldplay.xixi転載
2020-12-11 17:11:218340ブラウズ

Python チュートリアルこのコラムでは Python の Hook フック関数を紹介します

Python のフック関数を素早くマスターする

無料の学習に関する推奨事項が多数ありますので、python チュートリアル(ビデオ)

1 にアクセスしてください。フックとは

フック関数の概念をよく聞きますが、最近、ターゲット検出のオープンソース フレームワーク mmdetection を調べていると、そこにもフック プログラミング手法が多数含まれています。では、フックとは一体何なのでしょうか?フックの機能は何ですか?
  • フックとは何ですか?フックはその名前が示すように、必要なときに何かを掛けるために使用されるフックとして理解できます。具体的に説明すると、フック関数は、独自に実装したフック関数を、ある時点でターゲットのマウント ポイントにフックすることです。
  • フック関数の役割 たとえば、フックの概念は、Windows デスクトップ ソフトウェア開発、特にさまざまなイベント トリガーのメカニズムで非常に一般的です。たとえば、C MFC プログラムでは、マウスを監視する必要がある 左ボタンが押されたとき、MFC は onLeftKeyDown フック関数を提供します。明らかに、MFC フレームワークは onLeftKeyDown の特定の操作を実装しませんが、フックを提供するだけです。それを処理する必要がある場合は、この関数を書き換えて、必要な操作をこのフックにマウントするだけです。マウントしないと、MFC イベント トリガー メカニズムは空の操​​作を実行します。

上記のことから、
  • フック関数はプログラム内で事前に定義された関数であることがわかります。この関数は元のプログラムにあります。フロー (フックを公開する)
  • #プロセス内のフックによって定義された関数ブロックに特定の詳細を実装する必要があります。実装をフックにフックまたは登録する必要があります。 . 、フック関数をターゲットで使用できるようにします

  • フックはプログラミング メカニズムであり、特定の言語とは直接の関係はありません

  • デザインパターンからスタート フックモードはテンプレートメソッドを拡張したもののようです

  • フックは登録時のみ使用されるので、元のプログラムの処理では、登録もマウントも行われず、実行は Empty (つまり、操作は実行されません)

この記事では、Python を使用してフックの実装を説明し、フックの適用例を示します。オープンソースプロジェクト。フック関数の機能は、よく聞く別の名前であるコールバック関数に似ており、同じモデルに従って理解できます。

Python のフック関数を素早くマスターする

2. フック実装例

私の知る限り、フック関数は何らかのプロセス処理で最も一般的に使用されます。このプロセスには多くの手順が含まれることがよくあります。多くの場合、追加の操作を柔軟に追加できるように、フック関数がこれらのステップにマウントされます。

次は簡単な例です。この例の目的は、コンテンツをキューに挿入する汎用関数を実装することです。 2 つのプロセス ステップがあります。

  • キューに挿入する前にデータをフィルタリングする必要がありますinput_filter_fn

  • queueinsert_queue

class ContentStash(object):
    """
    content stash for online operation
    pipeline is
    1. input_filter: filter some contents, no use to user
    2. insert_queue(redis or other broker): insert useful content to queue
    """

    def __init__(self):
        self.input_filter_fn = None
        self.broker = []

    def register_input_filter_hook(self, input_filter_fn):
        """
        register input filter function, parameter is content dict
        Args:
            input_filter_fn: input filter function

        Returns:

        """
        self.input_filter_fn = input_filter_fn

    def insert_queue(self, content):
        """
        insert content to queue
        Args:
            content: dict

        Returns:

        """
        self.broker.append(content)

    def input_pipeline(self, content, use=False):
        """
        pipeline of input for content stash
        Args:
            use: is use, defaul False
            content: dict

        Returns:

        """
        if not use:
            return

        # input filter
        if self.input_filter_fn:
            _filter = self.input_filter_fn(content)
            
        # insert to queue
        if not _filter:
            self.insert_queue(content)



# test
## 实现一个你所需要的钩子实现:比如如果content 包含time就过滤掉,否则插入队列
def input_filter_hook(content):
    """
    test input filter hook
    Args:
        content: dict

    Returns: None or content

    """
    if content.get('time') is None:
        return
    else:
        return content


# 原有程序
content = {'filename': 'test.jpg', 'b64_file': "#test", 'data': {"result": "cat", "probility": 0.9}}
content_stash = ContentStash('audit', work_dir='')

# 挂上钩子函数, 可以有各种不同钩子函数的实现,但是要主要函数输入输出必须保持原有程序中一致,比如这里是content
content_stash.register_input_filter_hook(input_filter_hook)

# 执行流程
content_stash.input_pipeline(content)

3. オープンソース フレームワークでのフックの適用

3.1 keras

深層学習トレーニング プロセス内、フック機能が鮮やかに反映されます。

トレーニング プロセス (データ準備を除く) はトレーニング セットを複数回ポーリングします。各回はエポックと呼ばれ、各エポックはトレーニングのために複数のバッチに分割されます。プロセスは次のように分類されます:

  • トレーニングの開始

  • エポックをトレーニングする前

  • トレーニング1 バッチ前

  • バッチのトレーニング後

  • エポックのトレーニング後

  • 検証を評価するset

  • トレーニングの終了

これらのステップは、バッチ データのトレーニングのプロセスに散在しています。これらはフック関数として理解できます。これらのフック関数には、カスタマイズされたものがいくつか実装されています。たとえば、エポックを トレーニングした後、 トレーニングされたモデルを保存する必要があり、 トレーニングが終了したときに、最適なモデルを使用します。テストセット効果などを実行します。

フック関数は、さまざまなコールバック関数を通じて keras に実装されます。ここにコールバックの親クラスを置き、カスタマイズする際はこの親クラスを継承して気になるフックを実装するだけです。

@keras_export('keras.callbacks.Callback')
class Callback(object):
  """Abstract base class used to build new callbacks.

  Attributes:
      params: Dict. Training parameters
          (eg. verbosity, batch size, number of epochs...).
      model: Instance of `keras.models.Model`.
          Reference of the model being trained.

  The `logs` dictionary that callback methods
  take as argument will contain keys for quantities relevant to
  the current batch or epoch (see method-specific docstrings).
  """

  def __init__(self):
    self.validation_data = None  # pylint: disable=g-missing-from-attributes
    self.model = None
    # Whether this Callback should only run on the chief worker in a
    # Multi-Worker setting.
    # TODO(omalleyt): Make this attr public once solution is stable.
    self._chief_worker_only = None
    self._supports_tf_logs = False

  def set_params(self, params):
    self.params = params

  def set_model(self, model):
    self.model = model

  @doc_controls.for_subclass_implementers
  @generic_utils.default
  def on_batch_begin(self, batch, logs=None):
    """A backwards compatibility alias for `on_train_batch_begin`."""

  @doc_controls.for_subclass_implementers
  @generic_utils.default
  def on_batch_end(self, batch, logs=None):
    """A backwards compatibility alias for `on_train_batch_end`."""

  @doc_controls.for_subclass_implementers
  def on_epoch_begin(self, epoch, logs=None):
    """Called at the start of an epoch.

    Subclasses should override for any actions to run. This function should only
    be called during TRAIN mode.

    Arguments:
        epoch: Integer, index of epoch.
        logs: Dict. Currently no data is passed to this argument for this method
          but that may change in the future.
    """

  @doc_controls.for_subclass_implementers
  def on_epoch_end(self, epoch, logs=None):
    """Called at the end of an epoch.

    Subclasses should override for any actions to run. This function should only
    be called during TRAIN mode.

    Arguments:
        epoch: Integer, index of epoch.
        logs: Dict, metric results for this training epoch, and for the
          validation epoch if validation is performed. Validation result keys
          are prefixed with `val_`.
    """

  @doc_controls.for_subclass_implementers
  @generic_utils.default
  def on_train_batch_begin(self, batch, logs=None):
    """Called at the beginning of a training batch in `fit` methods.

    Subclasses should override for any actions to run.

    Arguments:
        batch: Integer, index of batch within the current epoch.
        logs: Dict, contains the return value of `model.train_step`. Typically,
          the values of the `Model`'s metrics are returned.  Example:
          `{'loss': 0.2, 'accuracy': 0.7}`.
    """
    # For backwards compatibility.
    self.on_batch_begin(batch, logs=logs)

  @doc_controls.for_subclass_implementers
  @generic_utils.default
  def on_train_batch_end(self, batch, logs=None):
    """Called at the end of a training batch in `fit` methods.

    Subclasses should override for any actions to run.

    Arguments:
        batch: Integer, index of batch within the current epoch.
        logs: Dict. Aggregated metric results up until this batch.
    """
    # For backwards compatibility.
    self.on_batch_end(batch, logs=logs)

  @doc_controls.for_subclass_implementers
  @generic_utils.default
  def on_test_batch_begin(self, batch, logs=None):
    """Called at the beginning of a batch in `evaluate` methods.

    Also called at the beginning of a validation batch in the `fit`
    methods, if validation data is provided.

    Subclasses should override for any actions to run.

    Arguments:
        batch: Integer, index of batch within the current epoch.
        logs: Dict, contains the return value of `model.test_step`. Typically,
          the values of the `Model`'s metrics are returned.  Example:
          `{'loss': 0.2, 'accuracy': 0.7}`.
    """

  @doc_controls.for_subclass_implementers
  @generic_utils.default
  def on_test_batch_end(self, batch, logs=None):
    """Called at the end of a batch in `evaluate` methods.

    Also called at the end of a validation batch in the `fit`
    methods, if validation data is provided.

    Subclasses should override for any actions to run.

    Arguments:
        batch: Integer, index of batch within the current epoch.
        logs: Dict. Aggregated metric results up until this batch.
    """

  @doc_controls.for_subclass_implementers
  @generic_utils.default
  def on_predict_batch_begin(self, batch, logs=None):
    """Called at the beginning of a batch in `predict` methods.

    Subclasses should override for any actions to run.

    Arguments:
        batch: Integer, index of batch within the current epoch.
        logs: Dict, contains the return value of `model.predict_step`,
          it typically returns a dict with a key 'outputs' containing
          the model's outputs.
    """

  @doc_controls.for_subclass_implementers
  @generic_utils.default
  def on_predict_batch_end(self, batch, logs=None):
    """Called at the end of a batch in `predict` methods.

    Subclasses should override for any actions to run.

    Arguments:
        batch: Integer, index of batch within the current epoch.
        logs: Dict. Aggregated metric results up until this batch.
    """

  @doc_controls.for_subclass_implementers
  def on_train_begin(self, logs=None):
    """Called at the beginning of training.

    Subclasses should override for any actions to run.

    Arguments:
        logs: Dict. Currently no data is passed to this argument for this method
          but that may change in the future.
    """

  @doc_controls.for_subclass_implementers
  def on_train_end(self, logs=None):
    """Called at the end of training.

    Subclasses should override for any actions to run.

    Arguments:
        logs: Dict. Currently the output of the last call to `on_epoch_end()`
          is passed to this argument for this method but that may change in
          the future.
    """

  @doc_controls.for_subclass_implementers
  def on_test_begin(self, logs=None):
    """Called at the beginning of evaluation or validation.

    Subclasses should override for any actions to run.

    Arguments:
        logs: Dict. Currently no data is passed to this argument for this method
          but that may change in the future.
    """

  @doc_controls.for_subclass_implementers
  def on_test_end(self, logs=None):
    """Called at the end of evaluation or validation.

    Subclasses should override for any actions to run.

    Arguments:
        logs: Dict. Currently the output of the last call to
          `on_test_batch_end()` is passed to this argument for this method
          but that may change in the future.
    """

  @doc_controls.for_subclass_implementers
  def on_predict_begin(self, logs=None):
    """Called at the beginning of prediction.

    Subclasses should override for any actions to run.

    Arguments:
        logs: Dict. Currently no data is passed to this argument for this method
          but that may change in the future.
    """

  @doc_controls.for_subclass_implementers
  def on_predict_end(self, logs=None):
    """Called at the end of prediction.

    Subclasses should override for any actions to run.

    Arguments:
        logs: Dict. Currently no data is passed to this argument for this method
          but that may change in the future.
    """

  def _implements_train_batch_hooks(self):
    """Determines if this Callback should be called for each train batch."""
    return (not generic_utils.is_default(self.on_batch_begin) or
            not generic_utils.is_default(self.on_batch_end) or
            not generic_utils.is_default(self.on_train_batch_begin) or
            not generic_utils.is_default(self.on_train_batch_end))

これらのフックの元のプログラムはモデル トレーニング プロセスにあります

keras ソース コードの場所: tensorflow\python\keras\engine\training.py

の部分は次のように抜粋されます (## 私はフックです):

# Container that configures and calls `tf.keras.Callback`s.
      if not isinstance(callbacks, callbacks_module.CallbackList):
        callbacks = callbacks_module.CallbackList(
            callbacks,
            add_history=True,
            add_progbar=verbose != 0,
            model=self,
            verbose=verbose,
            epochs=epochs,
            steps=data_handler.inferred_steps)

      ## I am hook
      callbacks.on_train_begin()
      training_logs = None
      # Handle fault-tolerance for multi-worker.
      # TODO(omalleyt): Fix the ordering issues that mean this has to
      # happen after `callbacks.on_train_begin`.
      data_handler._initial_epoch = (  # pylint: disable=protected-access
          self._maybe_load_initial_epoch_from_ckpt(initial_epoch))
      for epoch, iterator in data_handler.enumerate_epochs():
        self.reset_metrics()
        callbacks.on_epoch_begin(epoch)
        with data_handler.catch_stop_iteration():
          for step in data_handler.steps():
            with trace.Trace(
                'TraceContext',
                graph_type='train',
                epoch_num=epoch,
                step_num=step,
                batch_size=batch_size):
              ## I am hook
              callbacks.on_train_batch_begin(step)
              tmp_logs = train_function(iterator)
              if data_handler.should_sync:
                context.async_wait()
              logs = tmp_logs  # No error, now safe to assign to logs.
              end_step = step + data_handler.step_increment
              callbacks.on_train_batch_end(end_step, logs)
        epoch_logs = copy.copy(logs)

        # Run validation.

        ## I am hook
        callbacks.on_epoch_end(epoch, epoch_logs)

3.2 mmdetection

mmdetection は、さまざまなターゲット検出深層学習アルゴリズムを統合したターゲット検出用のオープンソース フレームワークです。 (pytorch バージョン )、faster-rcnn、fpn、retianet など。フックは、アプリケーション実装プロセスの特定の部分を公開するためにも広範囲に使用されます。

詳細については、

https://github.com/open-mmlab/mmdetection をご覧ください。

这里看一个训练的调用例子(摘录)(https://github.com/open-mmlab/mmdetection/blob/5d592154cca589c5113e8aadc8798bbc73630d98/mmdet/apis/train.py

def train_detector(model,
                   dataset,
                   cfg,
                   distributed=False,
                   validate=False,
                   timestamp=None,
                   meta=None):
    logger = get_root_logger(cfg.log_level)

    # prepare data loaders

    # put model on gpus

    # build runner
    optimizer = build_optimizer(model, cfg.optimizer)
    runner = EpochBasedRunner(
        model,
        optimizer=optimizer,
        work_dir=cfg.work_dir,
        logger=logger,
        meta=meta)
    # an ugly workaround to make .log and .log.json filenames the same
    runner.timestamp = timestamp

    # fp16 setting
    # register hooks
    runner.register_training_hooks(cfg.lr_config, optimizer_config,
                                   cfg.checkpoint_config, cfg.log_config,
                                   cfg.get('momentum_config', None))
    if distributed:
        runner.register_hook(DistSamplerSeedHook())

    # register eval hooks
    if validate:
        # Support batch_size > 1 in validation
        eval_cfg = cfg.get('evaluation', {})
        eval_hook = DistEvalHook if distributed else EvalHook
        runner.register_hook(eval_hook(val_dataloader, **eval_cfg))

    # user-defined hooks
    if cfg.get('custom_hooks', None):
        custom_hooks = cfg.custom_hooks
        assert isinstance(custom_hooks, list), \
            f'custom_hooks expect list type, but got {type(custom_hooks)}'
        for hook_cfg in cfg.custom_hooks:
            assert isinstance(hook_cfg, dict), \
                'Each item in custom_hooks expects dict type, but got ' \
                f'{type(hook_cfg)}'
            hook_cfg = hook_cfg.copy()
            priority = hook_cfg.pop('priority', 'NORMAL')
            hook = build_from_cfg(hook_cfg, HOOKS)
            runner.register_hook(hook, priority=priority)

4. 总结

本文介绍了hook的概念和应用,并给出了python的实现细则。希望对比有帮助。总结如下:

  • hook函数是流程中预定义好的一个步骤,没有实现

  • 挂载或者注册时, 流程执行就会执行这个钩子函数

  • 回调函数和hook函数功能上是一致的

  • hook设计方式带来灵活性,如果流程中有一个步骤,你想让调用方来实现,你可以用hook函数

相关免费学习推荐:php编程(视频)

以上がPython のフック関数を素早くマスターするの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明:
この記事はcsdn.netで複製されています。侵害がある場合は、admin@php.cn までご連絡ください。