検索
ホームページデータベースmysql チュートリアルMySQL実行プランの説明とインデックスデータ構造の推論

mysql チュートリアルこのコラムでは、実行計画の説明とインデックス データ構造を紹介します

MySQL実行プランの説明とインデックスデータ構造の推論

準備work

まず、データベース テーブル、デモンストレーション用の MySQL テーブル、およびテーブル作成ステートメントを構築します。

CREATE TABLE `emp` (  `id` int(11) NOT NULL AUTO_INCREMENT COMMENT '主键',  `empno` int(11) DEFAULT NULL COMMENT '雇员工号',  `ename` varchar(255) DEFAULT NULL COMMENT '雇员姓名',  `job` varchar(255) DEFAULT NULL COMMENT '工作',  `mgr` varchar(255) DEFAULT NULL COMMENT '经理的工号',  `hiredate` date DEFAULT NULL COMMENT '雇用日期',  `sal` double DEFAULT NULL COMMENT '工资',  `comm` double DEFAULT NULL COMMENT '津贴',  `deptno` int(11) DEFAULT NULL COMMENT '所属部门号',
  PRIMARY KEY (`id`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='雇员表';CREATE TABLE `dept` (  `id` int(11) NOT NULL AUTO_INCREMENT COMMENT '主键',  `deptno` int(11) DEFAULT NULL COMMENT '部门号',  `dname` varchar(255) DEFAULT NULL COMMENT '部门名称',  `loc` varchar(255) DEFAULT NULL COMMENT '地址',
  PRIMARY KEY (`id`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='部门表';CREATE TABLE `salgrade` (  `id` int(11) NOT NULL COMMENT '主键',  `grade` varchar(255) DEFAULT NULL COMMENT '等级',  `lowsal` varchar(255) DEFAULT NULL COMMENT '最低工资',  `hisal` varchar(255) DEFAULT NULL COMMENT '最高工资',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='工资等级表';CREATE TABLE `bonus` (  `id` int(11) NOT NULL COMMENT '主键',  `ename` varchar(255) DEFAULT NULL COMMENT '雇员姓名',  `job` varchar(255) DEFAULT NULL COMMENT '工作',  `sal` double DEFAULT NULL COMMENT '工资',  `comm` double DEFAULT NULL COMMENT '津贴',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='奖金表';复制代码

その後の実行計画、クエリの最適化、インデックスの最適化、その他のナレッジ ドリルは次のとおりです。上記の表に基づいて動作します。

MySQL 実行計画

SQL チューニングを実行するには、チューニング対象の SQL ステートメントがどのように実行されるかを理解し、高速化するために SQL ステートメントの具体的な実行プロセスを確認する必要があります。 SQL ステートメントの実行効率。

explain SQL ステートメントを使用すると、SQL クエリ ステートメントを実行するオプティマイザをシミュレートし、MySQL が SQL ステートメントをどのように処理するかを知ることができます。

説明については、公式Webサイトの紹介文をご覧ください。

説明の出力形式

mysql> explain select * from emp;
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------+| id | select_type | table | partitions | type | possible_keys | key  | key_len | ref  | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------+|  1 | SIMPLE      | emp   | NULL       | ALL  | NULL          | NULL | NULL    | NULL |    1 |   100.00 | NULL  |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------+复制代码

フィールド idselect_type およびその他のフィールドの説明:

##tableテーブル出力行の場合 (行のテーブル名を出力)partitions一致するパーティション (一致するパーティション)type 結合タイプpossible_keys選択可能なインデックス (可能なインデックス選択) key実際に選択されたインデックスkey_len選択されたキーの長さ (選択されたキーの長さ)refインデックスと比較された列 (インデックスと比較された列)rows行数の推定検査対象filteredテーブル条件によってフィルタリングされた行の割合 (テーブル条件によってフィルタリングされた行の割合)extra ######追加情報############

id

select查询的序列号,包含一组数字,表示查询中执行select子句或者操作表的顺序。

id号分为三类:

  • 如果id相同,那么执行顺序从上到下
mysql> explain select * from emp e join dept d on e.deptno = d.deptno join salgrade sg on e.sal between sg.lowsal and sg.hisal;
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+----------------------------------------------------+
| id | select_type | table | partitions | type | possible_keys | key  | key_len | ref  | rows | filtered | Extra                                              |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+----------------------------------------------------+
|  1 | SIMPLE      | e     | NULL       | ALL  | NULL          | NULL | NULL    | NULL |    1 |   100.00 | NULL                                               |
|  1 | SIMPLE      | d     | NULL       | ALL  | NULL          | NULL | NULL    | NULL |    1 |   100.00 | Using where; Using join buffer (Block Nested Loop) |
|  1 | SIMPLE      | sg    | NULL       | ALL  | NULL          | NULL | NULL    | NULL |    1 |   100.00 | Using where; Using join buffer (Block Nested Loop) |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+----------------------------------------------------+复制代码

这个查询,用explain执行一下,id序号都是1,那么MySQL的执行顺序就是从上到下执行的。

  • 如果id不同,如果是子查询,id的序号会递增,id值越大优先级越高,越先被执行
mysql> explain select * from emp e where e.deptno in (select d.deptno from dept d where d.dname = 'SALEDept');
+----+--------------+-------------+------------+------+---------------+------+---------+------+------+----------+----------------------------------------------------+| id | select_type  | table       | partitions | type | possible_keys | key  | key_len | ref  | rows | filtered | Extra                                              |
+----+--------------+-------------+------------+------+---------------+------+---------+------+------+----------+----------------------------------------------------+|  1 | SIMPLE       | <subquery2> | NULL       | ALL  | NULL          | NULL | NULL    | NULL | NULL |   100.00 | NULL                                               |
|  1 | SIMPLE       | e           | NULL       | ALL  | NULL          | NULL | NULL    | NULL |    2 |    50.00 | Using where; Using join buffer (Block Nested Loop) |
|  2 | MATERIALIZED | d           | NULL       | ALL  | NULL          | NULL | NULL    | NULL |    1 |   100.00 | Using where                                        |
+----+--------------+-------------+------------+------+---------------+------+---------+------+------+----------+----------------------------------------------------+复制代码</subquery2>

这个例子的执行顺序是先执行id为2的,然后执行id为1的。

  • id相同和不同的,同时存在:相同的可以认为是一组,从上往下顺序执行,在所有组中,id值越大,优先级越高,越先执行

还是上面那个例子,先执行id为2的,然后按顺序从上往下执行id为1的。

select_type

主要用来分辨查询的类型,是普通查询还是联合查询还是子查询。

意味
id SELECT識別子)
select_type SELECT タイプ(SELECT タイプ)
select_type Value JSON Name Meaning
SIMPLE None Simple SELECT (not using UNION or subqueries)
PRIMARY None Outermost SELECT
UNION None Second or later SELECT statement in a UNION
DEPENDENT UNION dependent (true) Second or later SELECT statement in a UNION, dependent on outer query
UNION RESULT union_result Result of a UNION.
SUBQUERY None First SELECT in subquery
DEPENDENT SUBQUERY dependent (true) First SELECT in subquery, dependent on outer query
DERIVED None Derived table
MATERIALIZED materialized_from_subquery Materialized subquery
UNCACHEABLE SUBQUERY cacheable (false) A subquery for which the result cannot be cached and must be re-evaluated for each row of the outer query
UNCACHEABLE UNION cacheable (false) The second or later select in a UNION that belongs to an uncacheable subquery (see UNCACHEABLE SUBQUERY)
  • SIMPLE 简单的查询,不包含子查询和union
mysql> explain select * from emp;
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------+| id | select_type | table | partitions | type | possible_keys | key  | key_len | ref  | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------+|  1 | SIMPLE      | emp   | NULL       | ALL  | NULL          | NULL | NULL    | NULL |    3 |   100.00 | NULL  |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------+复制代码
  • primary 查询中若包含任何复杂的子查询,最外层查询则被标记为Primary
  • union 若第二个select出现在union之后,则被标记为union
mysql> explain select * from emp where deptno = 1001 union select * from emp where sal  | NULL       | ALL  | NULL          | NULL | NULL    | NULL | NULL |     NULL | Using temporary |
+----+--------------+------------+------------+------+---------------+------+---------+------+------+----------+-----------------+复制代码

这条语句的select_type包含了primaryunion

  • dependent union 跟union类似,此处的depentent表示union或union all联合而成的结果会受外部表影响
  • union result 从union表获取结果的select
  • dependent subquery subquery的子查询要受到外部表查询的影响
mysql> explain select * from emp e where e.empno  in ( select empno from emp where deptno = 1001 union select empno from emp where sal  | NULL       | ALL  | NULL          | NULL | NULL    | NULL | NULL |     NULL | Using temporary |
+----+--------------------+------------+------------+------+---------------+------+---------+------+------+----------+-----------------+复制代码

这条SQL执行包含了PRIMARYDEPENDENT SUBQUERYDEPENDENT UNIONUNION RESULT

  • subquery 在select或者where列表中包含子查询

举例:

mysql> explain select * from emp where sal > (select avg(sal) from emp) ;
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+| id | select_type | table | partitions | type | possible_keys | key  | key_len | ref  | rows | filtered | Extra       |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+|  1 | PRIMARY     | emp   | NULL       | ALL  | NULL          | NULL | NULL    | NULL |    4 |    33.33 | Using where |
|  2 | SUBQUERY    | emp   | NULL       | ALL  | NULL          | NULL | NULL    | NULL |    4 |   100.00 | NULL        |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+复制代码
  • DERIVED from子句中出现的子查询,也叫做派生表
  • MATERIALIZED Materialized subquery?
  • UNCACHEABLE SUBQUERY 表示使用子查询的结果不能被缓存

例如:

mysql> explain select * from emp where empno = (select empno from emp where deptno=@@sort_buffer_size);
+----+----------------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+| id | select_type          | table | partitions | type | possible_keys | key  | key_len | ref  | rows | filtered | Extra       |
+----+----------------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+|  1 | PRIMARY              | emp   | NULL       | ALL  | NULL          | NULL | NULL    | NULL |    4 |   100.00 | Using where |
|  2 | UNCACHEABLE SUBQUERY | emp   | NULL       | ALL  | NULL          | NULL | NULL    | NULL |    4 |    25.00 | Using where |
+----+----------------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+复制代码
  • uncacheable union 表示union的查询结果不能被缓存

table

对应行正在访问哪一个表,表名或者别名,可能是临时表或者union合并结果集。

  1. 如果是具体的表名,则表明从实际的物理表中获取数据,当然也可以是表的别名
  2. 表名是derivedN的形式,表示使用了id为N的查询产生的衍生表
  3. 当有union result的时候,表名是union n1,n2等的形式,n1,n2表示参与union的id

type

type显示的是访问类型,访问类型表示我是以何种方式去访问我们的数据,最容易想到的是全表扫描,直接暴力的遍历一张表去寻找需要的数据,效率非常低下。

访问的类型有很多,效率从最好到最坏依次是:

system > const > eq_ref > ref > fulltext > ref_or_null > index_merge > unique_subquery > index_subquery > range > index > ALL

一般情况下,得保证查询至少达到range级别,最好能达到ref

  • all 全表扫描,一般情况下出现这样的sql语句而且数据量比较大的话那么就需要进行优化

通常,可以通过添加索引来避免ALL

  • index 全索引扫描这个比all的效率要好,主要有两种情况:
    • 一种是当前的查询时覆盖索引,即我们需要的数据在索引中就可以索取
    • 一是使用了索引进行排序,这样就避免数据的重排序
  • range 表示利用索引查询的时候限制了范围,在指定范围内进行查询,这样避免了index的全索引扫描,适用的操作符: =, , >, >=,

官网上举例如下:

SELECT * FROM tbl_name WHERE key_column = 10;

SELECT * FROM tbl_name WHERE key_column BETWEEN 10 and 20;

SELECT * FROM tbl_name WHERE key_column IN (10,20,30);

SELECT * FROM tbl_name WHERE key_part1 = 10 AND key_part2 IN (10,20,30);

  • index_subquery 利用索引来关联子查询,不再扫描全表

value IN (SELECT key_column FROM single_table WHERE some_expr)

  • unique_subquery 该连接类型类似与index_subquery,使用的是唯一索引

value IN (SELECT primary_key FROM single_table WHERE some_expr)

  • index_merge 在查询过程中需要多个索引组合使用
  • ref_or_null 对于某个字段既需要关联条件,也需要null值的情况下,查询优化器会选择这种访问方式

SELECT * FROM ref_table

WHERE key_column=expr OR key_column IS NULL;

  • fulltext 使用FULLTEXT索引执行join
  • ref 使用了非唯一性索引进行数据的查找

SELECT * FROM ref_table WHERE key_column=expr;

SELECT * FROM ref_table,other_table WHERE ref_table.key_column=other_table.column;

SELECT * FROM ref_table,other_table WHERE ref_table.key_column_part1=other_table.column AND ref_table.key_column_part2=1;

  • eq_ref 使用唯一性索引进行数据查找

SELECT * FROM ref_table,other_table WHERE ref_table.key_column=other_table.column;

SELECT * FROM ref_table,other_table WHERE ref_table.key_column_part1=other_table.column AND ref_table.key_column_part2=1;

  • const 这个表至多有一个匹配行

SELECT * FROM tbl_name WHERE primary_key=1;

SELECT * FROM tbl_name WHERE primary_key_part1=1 AND primary_key_part2=2;

例如:

mysql> explain select * from emp where id = 1;
+----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------+| id | select_type | table | partitions | type  | possible_keys | key     | key_len | ref   | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------+|  1 | SIMPLE      | emp   | NULL       | const | PRIMARY       | PRIMARY | 4       | const |    1 |   100.00 | NULL  |
+----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------+复制代码
  • system 表只有一行记录(等于系统表),这是const类型的特例,平时不会出现

possible_keys

显示可能应用在这张表中的索引,一个或多个,查询涉及到的字段上若存在索引,则该索引将被列出,但不一定被查询实际使用

key

实际使用的索引,如果为null,则没有使用索引,查询中若使用了覆盖索引,则该索引和查询的select字段重叠

key_len

表示索引中使用的字节数,可以通过key_len计算查询中使用的索引长度,在不损失精度的情况下长度越短越好

ref

显示索引的哪一列被使用了,如果可能的话,是一个常数

rows

根据表的统计信息及索引使用情况,大致估算出找出所需记录需要读取的行数,此参数很重要,直接反应的sql找了多少数据,在完成目的的情况下越少越好

extra

包含额外的信息

  • using filesort 说明mysql无法利用索引进行排序,只能利用排序算法进行排序,会消耗额外的位置
  • using temporary 建立临时表来保存中间结果,查询完成之后把临时表删除
  • using index 这个表示当前的查询是覆盖索引的,直接从索引中读取数据,而不用访问数据表。如果同时出现using where 表明索引被用来执行索引键值的查找,如果没有,表示索引被用来读取数据,而不是真的查找
  • using where 使用where进行条件过滤
  • using join buffer 使用连接缓存
  • impossible where where语句的结果总是false

MySQL索引基本知识

想要了解索引的优化方式,必须要对索引的底层原理有所了解。

索引的优点

  1. 大大减少了服务器需要扫描的数据量
  2. 帮助服务器避免排序和临时表
  3. 将随机io变成顺序io(提升效率)

索引的用处

  1. 快速查找匹配WHERE子句的行
  2. 从consideration中消除行,如果可以在多个索引之间进行选择,mysql通常会使用找到最少行的索引
  3. 如果表具有多列索引,则优化器可以使用索引的任何最左前缀来查找行
  4. 当有表连接的时候,从其他表检索行数据
  5. 查找特定索引列的min或max值
  6. 如果排序或分组时在可用索引的最左前缀上完成的,则对表进行排序和分组
  7. 在某些情况下,可以优化查询以检索值而无需查询数据行

MySQL実行プランの説明とインデックスデータ構造の推論

MySQL実行プランの説明とインデックスデータ構造の推論

MySQL索引数据结构推演

索引用于快速查找具有特定列值的行。

如果没有索引,MySQL必须从第一行开始,然后通读整个表以找到相关的行。

表越大花费的时间越多,如果表中有相关列的索引,MySQL可以快速确定要在数据文件中间查找的位置,而不必查看所有数据。这比顺序读取每一行要快得多。

既然MySQL索引能帮助我们快速查询到数据,那么它的底层是怎么存储数据的呢?

几种可能的存储结构

hash

hash表的索引格式

データをハッシュ テーブルに保存するデメリット:

  1. ハッシュ ストレージを使用する場合、すべてのデータ ファイルをメモリに追加する必要があるため、より多くのメモリを消費しますspace
  2. すべてのクエリが同等のクエリである場合、ハッシュ化は確かに非常に高速ですが、実際の作業環境では、同等のクエリではなく範囲検索データが多くなります。この場合、ハッシュは適切ではありません

実際、MySQL ストレージ エンジンが memory の場合、インデックス データ構造はハッシュ テーブルを使用します。

バイナリ ツリー

バイナリ ツリーの構造は次のとおりです。

MySQL実行プランの説明とインデックスデータ構造の推論

バイナリ ツリーは、ツリーの深さによるデータ損失 チルトでツリーの深さが深すぎると、IO 時間が増加し、データ読み取りの効率に影響します。

AVL ツリー 回転する必要があります。凡例を参照してください:

MySQL実行プランの説明とインデックスデータ構造の推論

赤黒ツリー回転以外の操作 色変更関数 (回転を減らすため)、挿入速度は速いですが、クエリ効率が失われます。

MySQL実行プランの説明とインデックスデータ構造の推論

バイナリ ツリー AVL ツリー 赤黒ツリー はすべて深度によって引き起こされます。ツリーが深すぎるとIO回数が増加し、データの読み込み効率に影響します。

B ツリーを見てみましょう

B ツリーの特徴:

    すべてのキー値はツリー全体に分散されます
  • 検索は非リーフ ノードで終了する場合があり、キーワードの完全なセット内で検索が実行されます。パフォーマンスは二分検索に近いです。
  • 各ノードには最大 m 個のサブツリーがあります
  • ルート ノードには少なくとも 2 つのサブツリーがあります。 ツリー
  • ブランチ ノードには少なくとも m/2 のサブツリーがあります (ルート ノードとリーフ ノードを除くすべてのブランチ ノード)
  • すべてのリーフ ノードは同じレベルにあり、各ノードは最大 m -1 個のキーを持つことができ、昇順に配置されます。

MySQL実行プランの説明とインデックスデータ構造の推論

凡例の説明:

各ノードは 1 つのディスク ブロックを占有します。ノード上には 2 つの昇順キーと、サブツリーのルート ノードへの 3 つのポインターがあります。ポインターには、子ノードが配置されているディスク ブロックのアドレスが格納されます。

2 つのキーワードで区切られた 3 つの範囲は、3 つのポインタが指すサブツリーのデータの範囲に対応します。

ルート ノードを例にとると、キーワードは 16 と 34 です。P1 ポインタが指すサブツリーのデータ範囲は 16 未満で、P2 ポインタが指すサブツリーのデータ範囲は 16 です。 ~34、および P3 ポインタが指すデータ範囲 サブツリーのデータ範囲が 34 より大きい。

キーワード検索プロセス:

1. ルート ノードに基づいてディスク ブロック 1 を見つけ、メモリに読み込みます。 [ディスク I/O 操作 1 回目]

2. 区間 (16,34) のキーワード 28 を比較し、ディスク ブロック 1 のポインタ P2 を見つけます。

3. P2 ポインタに従ってディスク ブロック 3 を見つけ、メモリに読み取ります。 [ディスク I/O 操作 2 回目]

4. 区間 (25,31) のキーワード 28 を比較し、ディスク ブロック 3 のポインタ P2 を見つけます。

5. P2 ポインタに従ってディスク ブロック 8 を見つけ、それをメモリに読み取ります。 [ディスク I/O 操作 3 回目]

6. ディスク ブロック 8 のキーワード リストでキーワード 28 を見つけます。

これから、B ツリー ストレージの欠点がわかります:

    各ノードにはキーがあり、データも含まれており、各ページのストレージ スペースは限られています。データが比較的大きい場合、各ノードに保存されるキーの数が少なくなります。
  • 保存されるデータの量が多い場合、深さが大きくなり、ディスク IO 回数が増加します。
  • ##MySQL インデックスのデータ構造とは何ですか?

公式 Web サイト: ほとんどの MySQL インデックス (PRIMARY KEY、UNIQUE、INDEX、 FULLTEXT) は B ツリー

に保存されます。誤解しないでください。実際、MySQL インデックスのストレージ構造は
B ツリー

です。上記の分析後、 B ツリー は不適切であることを知ってください。

mysql インデックス データ構造---B ツリー

B ツリーは BTree に基づく最適化であり、次の変更が加えられています:

1. それぞれB ツリーのノードには、より多くのノードを含めることができます。これには 2 つの理由があります。1 つ目は、ツリーの高さを減らすためです。2 つ目は、データ範囲を複数の間隔に変更するためです。多いほど、データの取得が速くなります。 。

2. 非リーフ ノードはキーを保存し、リーフ ノードはキーとデータを保存します。

3. リーフ ノードの 2 つのポインターが (ディスクの先読み特性に合わせて) 相互に接続されており、シーケンシャル クエリのパフォーマンスが高くなります。

B ツリー ストレージ検索図:

注意:

在B+Tree上有两个头指针,一个指向根节点,另一个指向关键字最小的叶子节点,而且所有叶子节点(即数据节点)之间是一种链式环结构。

因此可以对 B+Tree 进行两种查找运算:一种是对于主键的范围查找和分页查找,另一种是从根节点开始,进行随机查找。

由于B+树叶子结点只存放data,根节点只存放key,那么我们计算一下,即使只有3层B+树,也能制成千万级别的数据。

你得知道的技(zhuang)术(b)名词

假设有这样一个表如下,其中id是主键:

mysql> select * from stu;
+------+---------+------+| id   | name    | age  |
+------+---------+------+|    1 | Jack Ma |   18 |
|    2 | Pony    |   19 |
+------+---------+------+复制代码

回表

我们对普通列建普通索引,这时候我们来查:

select * from stu where name='Pony';复制代码

由于name建了索引,查询时先找nameB+树,找到主键id后,再找主键idB+树,从而找到整行记录。

这个最终会回到主键上来查找B+树,这个就是回表

覆盖索引

如果是这个查询:

mysql> select id from stu where name='Pony';复制代码

就没有回表了,因为直接找到主键id,返回就完了,不需要再找其他的了。

没有回表就叫覆盖索引

最左匹配

再来以nameage两个字段建组合索引(name, age),然后有这样一个查询:

select * from stu where name=? and age=?复制代码

这时按照组合索引(name, age)查询,先匹配name,再匹配age,如果查询变成这样:

select * from stu where age=?复制代码

直接不按name查了,此时索引不会生效,也就是不会按照索引查询---这就是最左匹配原则。

加入我就要按age查,还要有索引来优化呢?可以这样做:

  • (推荐)把组合索引(name, age)换个顺序,建(age, name)索引
  • 或者直接把age字段单独建个索引

索引下推

可能也叫谓词下推。。。

select t1.name,t2.name from t1 join t2 on t1.id=t2.id复制代码

t1有10条记录,t2有20条记录。

我们猜想一下,这个要么按这个方式执行:

先t1,t2按id合并(合并后20条),然后再查t1.name,t2.name

或者:

先把t1.name,t2.name找出来,再按照id关联

如果不使用索引条件下推优化的话,MySQL只能根据索引查询出t1,t2合并后的所有行,然后再依次比较是否符合全部条件。

当使用了索引条件下推优化技术后,可以通过索引中存储的数据判断当前索引对应的数据是否符合条件,只有符合条件的数据才将整行数据查询出来。

小结

  1. Explain 为了知道优化SQL语句的执行,需要查看SQL语句的具体执行过程,以加快SQL语句的执行效率。
  2. 索引优点及用处。
  3. 索引采用的数据结构是B+树。
  4. 回表,覆盖索引,最左匹配和索引下推。

更多相关免费学习推荐:mysql教程(视频)

以上がMySQL実行プランの説明とインデックスデータ構造の推論の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事はjuejinで複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
InnoDBバッファープールとそのパフォーマンスの重要性を説明してください。InnoDBバッファープールとそのパフォーマンスの重要性を説明してください。Apr 19, 2025 am 12:24 AM

Innodbbufferpoolは、データをキャッシュしてページをインデックス作成することにより、ディスクI/Oを削減し、データベースのパフォーマンスを改善します。その作業原則には次のものが含まれます。1。データ読み取り:Bufferpoolのデータを読む。 2。データの書き込み:データを変更した後、bufferpoolに書き込み、定期的にディスクに更新します。 3.キャッシュ管理:LRUアルゴリズムを使用して、キャッシュページを管理します。 4.読みメカニズム:隣接するデータページを事前にロードします。 BufferPoolのサイジングと複数のインスタンスを使用することにより、データベースのパフォーマンスを最適化できます。

MySQL対その他のプログラミング言語:比較MySQL対その他のプログラミング言語:比較Apr 19, 2025 am 12:22 AM

他のプログラミング言語と比較して、MySQLは主にデータの保存と管理に使用されますが、Python、Java、Cなどの他の言語は論理処理とアプリケーション開発に使用されます。 MySQLは、データ管理のニーズに適した高性能、スケーラビリティ、およびクロスプラットフォームサポートで知られていますが、他の言語は、データ分析、エンタープライズアプリケーション、システムプログラミングなどのそれぞれの分野で利点があります。

MySQLの学習:新しいユーザー向けの段階的なガイドMySQLの学習:新しいユーザー向けの段階的なガイドApr 19, 2025 am 12:19 AM

MySQLは、データストレージ、管理、分析に適した強力なオープンソースデータベース管理システムであるため、学習する価値があります。 1)MySQLは、SQLを使用してデータを操作するリレーショナルデータベースであり、構造化されたデータ管理に適しています。 2)SQL言語はMySQLと対話するための鍵であり、CRUD操作をサポートします。 3)MySQLの作業原則には、クライアント/サーバーアーキテクチャ、ストレージエンジン、クエリオプティマイザーが含まれます。 4)基本的な使用には、データベースとテーブルの作成が含まれ、高度な使用にはJoinを使用してテーブルの参加が含まれます。 5)一般的なエラーには、構文エラーと許可の問題が含まれ、デバッグスキルには、構文のチェックと説明コマンドの使用が含まれます。 6)パフォーマンスの最適化には、インデックスの使用、SQLステートメントの最適化、およびデータベースの定期的なメンテナンスが含まれます。

MySQL:初心者が習得するための必須スキルMySQL:初心者が習得するための必須スキルApr 18, 2025 am 12:24 AM

MySQLは、初心者がデータベーススキルを学ぶのに適しています。 1.MySQLサーバーとクライアントツールをインストールします。 2。selectなどの基本的なSQLクエリを理解します。 3。マスターデータ操作:テーブルを作成し、データを挿入、更新、削除します。 4.高度なスキルを学ぶ:サブクエリとウィンドウの関数。 5。デバッグと最適化:構文を確認し、インデックスを使用し、選択*を避け、制限を使用します。

MySQL:構造化データとリレーショナルデータベースMySQL:構造化データとリレーショナルデータベースApr 18, 2025 am 12:22 AM

MySQLは、テーブル構造とSQLクエリを介して構造化されたデータを効率的に管理し、外部キーを介してテーブル間関係を実装します。 1.テーブルを作成するときにデータ形式と入力を定義します。 2。外部キーを使用して、テーブル間の関係を確立します。 3。インデックス作成とクエリの最適化により、パフォーマンスを改善します。 4.データベースを定期的にバックアップおよび監視して、データのセキュリティとパフォーマンスの最適化を確保します。

MySQL:説明されている主要な機能と機能MySQL:説明されている主要な機能と機能Apr 18, 2025 am 12:17 AM

MySQLは、Web開発で広く使用されているオープンソースリレーショナルデータベース管理システムです。その重要な機能には、次のものが含まれます。1。さまざまなシナリオに適したInnodbやMyisamなどの複数のストレージエンジンをサポートします。 2。ロードバランスとデータバックアップを容易にするために、マスタースレーブレプリケーション機能を提供します。 3.クエリの最適化とインデックスの使用により、クエリ効率を改善します。

SQLの目的:MySQLデータベースとの対話SQLの目的:MySQLデータベースとの対話Apr 18, 2025 am 12:12 AM

SQLは、MySQLデータベースと対話して、データの追加、削除、変更、検査、データベース設計を実現するために使用されます。 1)SQLは、ステートメントの選択、挿入、更新、削除を介してデータ操作を実行します。 2)データベースの設計と管理に作成、変更、ドロップステートメントを使用します。 3)複雑なクエリとデータ分析は、ビジネス上の意思決定効率を改善するためにSQLを通じて実装されます。

初心者向けのMySQL:データベース管理を開始します初心者向けのMySQL:データベース管理を開始しますApr 18, 2025 am 12:10 AM

MySQLの基本操作には、データベース、テーブルの作成、およびSQLを使用してデータのCRUD操作を実行することが含まれます。 1.データベースの作成:createdatabasemy_first_db; 2。テーブルの作成:createTableBooks(idintauto_incrementprimarykey、titlevarchary(100)notnull、authorvarchar(100)notnull、published_yearint); 3.データの挿入:InsertIntoBooks(タイトル、著者、公開_year)VA

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

PhpStorm Mac バージョン

PhpStorm Mac バージョン

最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境