ホームページ > 記事 > ウェブフロントエンド > JS の一般的な基本アルゴリズムの紹介
アルゴリズムは、特定のデータ構造の入力を特定のデータ構造の出力に変換する単なる関数です。アルゴリズムの内部ロジックによって変換方法が決まります。
基本アルゴリズム
1. 並べ替え
1. バブルソート
//冒泡排序function bubbleSort(arr) { for(var i = 1, len = arr.length; i < len - 1; ++i) { for(var j = 0; j <= len - i; ++j) { if (arr[j] > arr[j + 1]) { let temp = arr[j]; arr[j] = arr[j + 1]; arr[j + 1] = temp; } } } }
2. 挿入ソート
//插入排序 过程就像你拿到一副扑克牌然后对它排序一样 function insertionSort(arr) { var n = arr.length; // 我们认为arr[0]已经被排序,所以i从1开始 for (var i = 1; i < n; i++) { // 取出下一个新元素,在已排序的元素序列中从后向前扫描来与该新元素比较大小 for (var j = i - 1; j >= 0; j--) { if (arr[i] >= arr[j]) { // 若要从大到小排序,则将该行改为if (arr[i] <= arr[j])即可 // 如果新元素arr[i] 大于等于 已排序的元素序列的arr[j], // 则将arr[i]插入到arr[j]的下一位置,保持序列从小到大的顺序 arr.splice(j + 1, 0, arr.splice(i, 1)[0]); // 由于序列是从小到大并从后向前扫描的,所以不必再比较下标小于j的值比arr[j]小的值,退出循环 break; } else if (j === 0) { // arr[j]比已排序序列的元素都要小,将它插入到序列最前面 arr.splice(j, 0, arr.splice(i, 1)[0]); } } } return arr; }
目的が昇順ソートである場合、シーケンスがすでに昇順でソートされていることが最善のケースです。順序の場合、比較する必要があるのは n-1 回だけであり、時間計算量は O(n) です。最悪のシナリオは、シーケンスが元々降順でソートされているため、n(n-1)/2 回の比較が必要となり、時間計算量が O(n^2) になることです。
したがって、平均すると、挿入ソートの時間計算量は O(n^2) になります。明らかに、電力レベルの時間の複雑さは、大量のデータがある状況には挿入ソートが適していないことを意味しますが、一般に、挿入ソートは少量のデータのソートに適しています。
3. クイックソート
//快速排序 function qSort(arr) { //声明并初始化左边的数组和右边的数组 var left = [], right = []; //使用数组第一个元素作为基准值 var base = arr[0]; //当数组长度只有1或者为空时,直接返回数组,不需要排序 if(arr.length <= 1) return arr; //进行遍历 for(var i = 1, len = arr.length; i < len; i++) { if(arr[i] <= base) { //如果小于基准值,push到左边的数组 left.push(arr[i]); } else { //如果大于基准值,push到右边的数组 right.push(arr[i]); } } //递归并且合并数组元素 return [...qSort(left), ...[base], ...qSort(right)]; //return qSort(left).concat([base], qSort(right));}
補足:
このコードでは、次のことがわかります。左部分と右部分をピボットで分割し、その後、再帰的に左部分と右部分のピボットソートを続けることで、クイックソートのテキスト記述が実現されており、このアルゴリズムの実装には問題ありません。
ただし、この実装は非常に理解しやすいです。ただし、この実装にも改善の余地があり、関数内に一時データを格納する配列が左右 2 つ定義されていることがわかりました。再帰の数が増加するにつれて、より多くの一時データが定義および保存され、Ω(n) 個の追加の保存スペースが必要になります。
したがって、多くのアルゴリズムの紹介と同様に、インプレース パーティショニング バージョンはクイック ソートの実装に使用されます。
インプレース分割アルゴリズムの説明
シーケンスから「ピボット」と呼ばれる要素、つまり最初の要素の位置を選択します。配列のインデックスがインデックスとして使用されます。
// 交换数组元素位置
function swap(array, i, j) {
var temp = array[i];
array[i] = array[j];
array[j] = temp;
}
function partition(array, left, right) {
var index = left;
var pivot = array[right]; // 取最后一个数字当做基准值,这样方便遍历
for (var i = left; i < right; i++) {
if (array[i] <= pivot) {
swap(array, index, i);
index++;
}
}
swap(array, right, index);
return index;
}
インプレース分割を複数回再帰的に行う必要があり、同時に追加のアドレスは必要ないためです。したがって、分割アルゴリズムを実装するときは、元の配列 array、走査する必要がある配列の左側の開始点、および走査する必要がある配列の右側の終点という 3 つのパラメータがあります。
最後に、次の再帰のためにソートされたインデックス値が返されます。このインデックスに対応する値は、インデックスの左側の配列要素より小さく、右側のすべての配列要素より大きくなければなりません。
基本的には、パーティショニング アルゴリズムをさらに最適化できます。d1b18da110a75e1daa1c15b19318673e y,则返回1,这样,排序算法就不用关心具体的比较过程,而是根据比较结果直接排序。
值得注意的例子:
// 看上去正常的结果: ['Google', 'Apple', 'Microsoft'].sort(); // ['Apple', 'Google', 'Microsoft']; // apple排在了最后: ['Google', 'apple', 'Microsoft'].sort(); // ['Google', 'Microsoft", 'apple'] // 无法理解的结果: [10, 20, 1, 2].sort(); // [1, 10, 2, 20]
解释原因
第二个排序把apple排在了最后,是因为字符串根据ASCII码进行排序,而小写字母a的ASCII码在大写字母之后。
第三个排序结果,简单的数字排序都能错。
这是因为Array的sort()方法默认把所有元素先转换为String再排序,结果’10’排在了’2’的前面,因为字符’1’比字符’2’的ASCII码小。
因此我们把结合这个原理:
var arr = [10, 20, 1, 2]; arr.sort(function (x, y) { if (x < y) { return -1; } if (x > y) { return 1; } return 0; }); console.log(arr); // [1, 2, 10, 20]
上面的代码解读一下:传入x,y,如果xec6a33986ca3023cbf194a082708d99dy,返回-1,x后面排,如果x=y,无所谓谁排谁前面。
还有一个,sort()方法会直接对Array进行修改,它返回的结果仍是当前Array,一个例子:
var a1 = ['B', 'A', 'C'];var a2 = a1.sort(); a1; // ['A', 'B', 'C'] a2; // ['A', 'B', 'C'] a1 === a2; // true, a1和a2是同一对象
相关免费学习推荐:js视频教程
以上がJS の一般的な基本アルゴリズムの紹介の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。