1. 人工知能
人工知能(Artificial Intelligence)、英語の略称はAIです。人間の知性をシミュレートし、拡張し、拡張するための理論、方法、技術、および応用システムを研究および開発する新しい技術科学です。
人工知能は、知能の性質を理解し、人間の知能と同様の方法で応答できる新しいインテリジェントな機械を生み出すことを試みるコンピューター サイエンスの一分野です。この分野の研究には、音声認識、画像認識、ロボット、自然言語処理、インテリジェント検索およびエキスパート システムなど。
人工知能は、人間の意識と思考の情報プロセスをシミュレートできます。人工知能は人間の知能ではありませんが、人間と同じように考えることができ、人間の知能を超える可能性もあります。
2. 機械学習
機械学習とは、特定のアルゴリズムを使用してコンピューターが既知のデータを使用して適切なモデルを導き出し、このモデルを使用するように導くことを指します。新しい状況についての判断。
機械学習の考え方は複雑ではなく、人間の生活における学習プロセスのシミュレーションにすぎません。このプロセス全体において、最も重要なものはデータです。
データを通じてトレーニングされた学習アルゴリズムに関する関連研究はすべて機械学習に属します。これには、線形回帰 (線形回帰)、K 平均法 (K 平均法、プロトタイプ) など、長年にわたって開発されてきた多くのテクノロジーが含まれます。ベースの目的関数集計)クラス手法)、Decision Trees(ディシジョン ツリー、確率分析を使用したグラフィカルな手法)、Random Forest(ランダム フォレスト、確率分析を使用したグラフィカルな手法)、PCA(Principal Component Analysis、主成分分析)、SVM(サポートベクターマシン、サポートベクターマシン)とANN(人工ニューラルネットワーク、人工ニューラルネットワーク)。
3. ディープ ラーニング
ディープ ラーニング (Deep Learning) の概念は、人工ニューラル ネットワークの研究から生まれました。複数の隠れ層を持つ多層パーセプトロンは、深層学習構造です。ディープラーニングは、低レベルの特徴を組み合わせてより抽象的な高レベル表現の属性カテゴリまたは特徴を形成することにより、データの分散特徴表現を発見します。
ディープ ラーニングは、機械学習研究の新しい分野です。その動機は、分析と学習のために人間の脳のニューラル ネットワークを構築し、シミュレートすることです。データを解釈する人間の脳のメカニズムを模倣します。画像、音声、テキスト。
以上が人工知能、機械学習、深層学習とは何ですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。