プロジェクトの設立から開発、発売に至るまでの、製品に関わる小さなプロジェクトは、時間と需要が急増するにつれてますます複雑になり、大規模なプロジェクトに変わります。初期のプロジェクト アーキテクチャが適切に設計されていない場合、コードはますます肥大化して保守が困難になり、その後の製品の反復ごとにシステム全体に影響を及ぼします。
マイクロサービスベースのプロジェクトとモジュール間の疎結合関係は良い選択であり、メンテナンスコストは増加しますが、それでも価値があります。
マイクロサービス プロジェクトの安定性に加えて、私はいくつかの問題についても個人的に懸念しています:
1: サービス間のデータ送信の効率とセキュリティ。
2: サービスの動的な拡張、つまりサービスの登録と検出、およびサービスのクラスタリング。
3: マイクロサービス機能はカスタマイズ可能ですが、すべての機能がニーズを満たすわけではないため、必要に応じていくつかの機能を開発する必要があります。
go-micro は、go 言語 での優れた RPC マイクロサービス フレームワークです。完璧な機能を備えており、私が懸念していたいくつかの問題も解決しています。
1:サービス間の送信形式は protobuf であり、非常に効率的で高速かつ安全です。
2: go-micro のサービスの登録と検出は多様です。個人的には etcdv3 のサービス検出と登録の方が好きです。
3: 主要な機能には対応するインターフェイスがあり、対応するインターフェイスが実装されていれば、必要に応じてプラグインをカスタマイズできます。
暇なときに go-micro のソースコードを体系的に読みましたが、読めば読むほどこのフレームワークはよくできていると感じ、多くのことを学びました。一連の投稿をまとめて、go-micro を学習した私の経験を皆さんと共有したいと思っています。
go-micro の通信プロセスは次のとおりです。
サーバーはクライアントの呼び出しを監視し、Brocker によってプッシュされた情報を処理します。そして、サーバーは、クライアントがそのステータスを知ることができるように、その存在または終了を Register に登録する必要があります。
サービス登録の検出を登録します。
クライアントはRegisterからServer情報を取得し、呼び出しごとのアルゴリズムに基づいて通信するServerを選択しますが、当然ながら通信にはエンコード/デコードや伝送プロトコルの選択などの一連の処理が必要です。
すべてのサーバーに通知する必要がある場合は、Brocker を使用して情報をプッシュできます。
ブロッカー情報キューは情報を受信して公開します。
go-micro が高度にカスタマイズできる理由は、そのフレームワーク構造と切り離すことができません。go-micro は 8 つの主要なインターフェイスで構成されています。各インターフェイスは、独自のニーズに応じて再実装できます。この 8 つの主要なインターフェイスgo-micro のフレームワーク構造も構成します。
これらのインターフェイス go-micir には独自のデフォルト実装があり、これらのインターフェイスの実装の代替となる go-plugins もあります。ニーズに応じて独自のプラグインを実装することもできます。
この記事では、主に go-micro の主な構造とこれらのインターフェイスの機能を紹介します。具体的な詳細については、今後の記事で説明します。
#Transort#サービス間の通信のためのインターフェイス。つまり、サービスの送受信の最終的な実装は、これらのインターフェイスによってカスタマイズされます。
ソース コード:
type Socket interface { Recv(*Message) error Send(*Message) error Close() error } type Client interface { Socket } type Listener interface { Addr() string Close() error Accept(func(Socket)) error } type Transport interface { Dial(addr string, opts ...DialOption) (Client, error) Listen(addr string, opts ...ListenOption) (Listener, error) String() string }
Transport の Listen メソッドは通常、サーバーによって呼び出され、ポートをリッスンしてクライアントからの呼び出しを待ちます。
Transport の Dial は、クライアントがサービスに接続するために使用する方法です。これは、クライアント インターフェイスを返し、クライアント インターフェイスはクライアント インターフェイスを返します。このクライアントはソケット インターフェイスに組み込まれており、このインターフェイスのメソッドは、具体的には通信情報の送受信を行うためのものです。
http 送信は、go-micro のデフォルトの同期通信メカニズムです。もちろん、他にも grpc、nats、tcp、udp、rabbitmq、nats などのプラグインが多数あり、これらはすべてこれまでに実装されています。 go-plugins で見つけることができます。
Codec送信方法に関して、次に解決すべきは送信のエンコードとデコードの問題です。go-micro には多くのエンコードとデコードの方法があります。デフォルトの実装もちろんprotobufですが、json、protobuf、jsonrpc、mercuryなど他の実装方法もあります。
ソース コード
type Codec interface { ReadHeader(*Message, MessageType) error ReadBody(interface{}) error Write(*Message, interface{}) error Close() error String() string } type Message struct { Id uint64 Type MessageType Target string Method string Error string Header map[string]string }
Codec インターフェイスの Write メソッドはエンコード プロセスであり、2 つの Read はデコード プロセスです。
レジストリサービスの登録と検出、現在実装されている consul、mdns、etcd、etcdv3、zookeeper、kubernetes など、
type Registry interface { Register(*Service, ...RegisterOption) error Deregister(*Service) error GetService(string) ([]*Service, error) ListServices() ([]*Service, error) Watch(...WatchOption) (Watcher, error) String() string Options() Options }
に簡単に言うと、サービスが登録され、クライアントは監視のために watch メソッドを使用します。サービスが追加または削除されると、このメソッドがトリガーされて、クライアントにサービス情報の更新を通知します。
デフォルトのサービス登録と検出は consul ですが、consul クラスターを直接使用できないため、個人的にはお勧めしません。
我个人比较喜欢etcdv3集群。大家可以根据自己的喜好选择。
Selector
以Registry为基础,Selector 是客户端级别的负载均衡,当有客户端向服务发送请求时, selector根据不同的算法从Registery中的主机列表,得到可用的Service节点,进行通信。目前实现的有循环算法和随机算法,默认的是随机算法。
源码:
type Selector interface { Init(opts ...Option) error Options() Options // Select returns a function which should return the next node Select(service string, opts ...SelectOption) (Next, error) // Mark sets the success/error against a node Mark(service string, node *registry.Node, err error) // Reset returns state back to zero for a service Reset(service string) // Close renders the selector unusable Close() error // Name of the selector String() string }
默认的是实现是本地缓存,当前实现的有blacklist,label,named等方式。
Broker
Broker是消息发布和订阅的接口。很简单的一个例子,因为服务的节点是不固定的,如果有需要修改所有服务行为的需求,可以使服务订阅某个主题,当有信息发布时,所有的监听服务都会收到信息,根据你的需要做相应的行为。
源码
type Broker interface { Options() Options Address() string Connect() error Disconnect() error Init(...Option) error Publish(string, *Message, ...PublishOption) error Subscribe(string, Handler, ...SubscribeOption) (Subscriber, error) String() string }
Broker默认的实现方式是http方式,但是这种方式不要在生产环境用。go-plugins里有很多成熟的消息队列实现方式,有kafka、nsq、rabbitmq、redis,等等。
Client
Client是请求服务的接口,他封装Transport和Codec进行rpc调用,也封装了Brocker进行信息的发布。
源码
type Client interface { Init(...Option) error Options() Options NewMessage(topic string, msg interface{}, opts ...MessageOption) Message NewRequest(service, method string, req interface{}, reqOpts ...RequestOption) Request Call(ctx context.Context, req Request, rsp interface{}, opts ...CallOption) error Stream(ctx context.Context, req Request, opts ...CallOption) (Stream, error) Publish(ctx context.Context, msg Message, opts ...PublishOption) error String() string }
当然他也支持双工通信 Stream 这些具体的实现方式和使用方式,以后会详细解说。
默认的是rpc实现方式,他还有grpc和http方式,在go-plugins里可以找到
Server
Server看名字大家也知道是做什么的了。监听等待rpc请求。监听broker的订阅信息,等待信息队列的推送等。
源码
type Server interface { Options() Options Init(...Option) error Handle(Handler) error NewHandler(interface{}, ...HandlerOption) Handler NewSubscriber(string, interface{}, ...SubscriberOption) Subscriber Subscribe(Subscriber) error Register() error Deregister() error Start() error Stop() error String() string }
默认的是rpc实现方式,他还有grpc和http方式,在go-plugins里可以找到
Service
Service是Client和Server的封装,他包含了一系列的方法使用初始值去初始化Service和Client,使我们可以很简单的创建一个rpc服务。
源码:
type Service interface { Init(...Option) Options() Options Client() client.Client Server() server.Server Run() error String() string }
以上がgo マイクロサービス フレームワーク go-micro の全体的なアーキテクチャの紹介の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。