#ブートストラップ アルゴリズムとは何ですか?
ブートストラップ アルゴリズムとは、複数回の繰り返しサンプリングによる限られたサンプル データの使用を指します。 、親サンプル分布を代表する新しいサンプルを再確立します。ブートストラップの適用は多くの統計的仮定に基づいているため、サンプリングの精度は仮定が確立されるかどうかに影響します。 統計学では、ブートストラップは、リセットされたランダム サンプリングに依存するすべての実験を指します。ブートストラップを使用して、サンプル推定の精度を計算できます。サンプリングの場合、特定の統計量の 1 つの値 (平均など) しか計算できず、平均統計量の分布を知ることはできません。しかし、ブートストラップ法 (ブートストラップ法) を使用すると、平均統計量の近似分布をシミュレートできます。分散を使用すると、さまざまなことが可能になります (たとえば、導き出した結果を使用して実際の全体的な状況を推測するなど)。 ブートストラップ法の実装は非常に簡単で、サンプルサイズが n であるとします:元のサンプルに置換を伴うサンプリングがあり、それを n 回描画します。新しいサンプルが抽出されるたびに、この操作が繰り返されて多くの新しいサンプルが形成され、それを通じてサンプルの分布を計算できます。新しいサンプルの数は通常 1000 ~ 10000 です。計算コストが小さい場合、または精度要件が比較的高い場合は、新しいサンプルの数を増やします。 利点: シンプルで操作が簡単です。 欠点: ブートストラップの適用は多くの統計的仮定に基づいているため、その仮定が確立されているかどうかがサンプリングの精度に影響します。以上がブートストラップアルゴリズムとは何ですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。